Mathematics
มหาวิทยาลัย

これが意味もわからないくらいわからないです…。
細かいところまで教えていただけると嬉しいです。

2/3 10 球面上の2点を結ぶ最短路は, 2点と球面の中心を通る平面による切り口の円 (大円)の弧で与えられ, この円弧の長さを2点間の距離と定める.具体的な計算では,(スマートフォンの) 関数電卓を用いよ. (1) スマートフォンのコンパス (方位磁針) アプリを用いた地球の半径を見積もる方法を論じ、 実際に 見積もってみよ. (2) 図のように, 半径 R の球面上に3点 A, B, C を定める. この とき, COS ∠AOB = sina.sin β.cosy+cosa.cos β Z B B y であることを示せ . x (3) 京都 (北緯35° 東経 135°) とニューメキシコ州アルバカーキ (北緯35° 西経 106°) はほぼ同じ 緯度にある (2) の図を C を北極とした地球に見立て、関係式 (★)を用いて, 京都とアルバカーキの距 離を求めよ. また, 比較のため, 緯度が 35°の緯線に沿った2地点の距離を求めよ. (4)(2) における角度 α, B, y はそれぞれに対応する円弧と R の比で表すことができる.このとき, 関 係式 (★) は,R→∞の極限で, 平面上の △ABC の余弦定理となることを示せ.
数学 大学数学 高校数学 ベクトル 簡単 難しい sin cos 三角

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?