Physics
มัธยมปลาย

(2)番についてです
自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2
と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

142 熱 49 熱力学 断熱材で作られた円筒形の容器に〔mol]の 単原子分子の理想気体が入っていて、圧力と温 TOK] は大気のそれと等しい。 ピストンMの 質量は 〔kg] で滑らかに動く。はじめMはス トッパーAで止まっており、容器の底からの高 さはLQm] である。 気体定数をR [J/mol・K], 重力加速度(m/s²] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ, 温度が T1 [K] になったときM が上に動き始めた。温度 T と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け高さが2.2L[m]となった。このとき の温度 T [K] を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W 〔J〕 と気体に加えた熱量 Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして,外力を加えてMを ゆっくりと押し込み、元の高さL 〔m〕まで戻した。 このときの気体 の温度 T3 〔K〕 を求めよ。 また, このとき気体がされた仕事 W 〔J〕 を求めよ。 ただし、この断熱変化の過程では圧力と体積Vの間に (京都工繊大) はPV =一定の関係がある。 Base M ヒーター 10000 Cv= Level (1), (2)★ (3)★ Point & Hint (1) 前後の状態方程式と、ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では, 気体がする仕事 = PAVとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 γは比熱比とよばれ, y=Cp/Cv ここで は単原子なので,y= =1/12/2/12/2R=7/3/3 となっている。あとは第1法則の問題。 5 h= 単原子分子気体 nRT U= 3 5 = 2R CP=R 2 ※ この3式は「単原子」のとき LECTURE 初めの気体の状態方程式は ピストンが動き始めるときの圧力をPとすると PSL = nRT …..……② (1) そして,このときのピストンのつり合いより PS = Pos+Mg...... ③ T₁=To+ _MgL nR4 ①〜③ より 定積変化だから より (2 そして (2) Pi での定圧変化が起こる。 状態方程式より P₁S³/L=nRT₂ また, Q=nCvAT= PSL = nRTo ...... ① T₂ = ³2 T₁ = 3 (To+ MgL nR W2 = Pi4V = Pi P.(S. 3/L-SL) Q2=nCpAT = n 状態方程式より 5 2 第1法則より より 49 熱力学 nR(T₁-To) = MgL 2 2 T3= ③ -T₁ (3) 高さまで押し込んだときの圧力をP3とすると P.(S-L)* = P.(SL) P3= 3 PS を用いて. Ws = Mg AU』を調べ ( 4U2=2R(T-T)) 第1法則 4U2 = Q2+(-Wa) を用いて Qを求めることもできるが、まわりくどい。 =1/12P.SL=1/12nRT=1/12(nRT,+MgL) ②を用いた .. T = n. 52 R (T₂ - T₁) = (nRT. + MgL) 143 ピストンが動いて も上図の状況は変 P.S わらない。 つまり, 圧力 P1 は一定 'P・SL = nRT3 ...... ⑤ - (3) ³T = (3) (T. + MgL) 'T nR 2nR (T₁-T₂) = 0 + W₁ P1 = (2)(2)-1) (nRT. + MgL)

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉