学年

質問の種類

物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1
物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

[II] 質量Mの人工衛星が,地表から高さんで,地球を中心として,等速円運動を している。地球を質量 Mo, 半径Rの密度が一様な球とし,自転,公転の影響は ないものとする。地表での重力加速度の大きさをg, 地球から無限遠の地点を万 有引力による位置エネルギーの基準点として、 以下の問いに答えよ。 (1)地表の物体にはたらく重力は、物体と地球の間にはたらく万有引力と等し い。また,地表の物体にはたらく重力は,地球の全質量が地球の中心に集まっ た場合の万有引力と考えてよい。 これらのことから, 万有引力定数を Mo, g, R を用いて表せ。 映画 (2)人工衛星の向心加速度の大きさはいくらか。 R, h, g を用いて表せ。 (3) 人工衛星の速さ Vはいくらか。 R, h, g を用いて表せ。 (4) 人工衛星の運動エネルギーはいくらか。 M, R, h, g を用いて表せ。 (5) 人工衛星の万有引力による位置エネルギーはいくらか。 M, R, h,g を用い て表せ 人工衛星が,軌道を変えるために,質量m(m <M) の物体を, 人工衛星の進 行方向に対して真うしろに、瞬間的に発射した。 発射された物体の,発射前の人 工衛星に対する相対速度の大きさを”とする。 (6) 物体を発射した直後の人工衛星の速さ V はいくらか。 Vを含む式で表せ。 (7) 物体を発射した直後の人工衛星の力学的エネルギーはいくらか。 M, m, R, V', h, g を用いて表せ。 向 (8) 物体を発射した後, 人工衛星が無限の遠方へ飛んで行くことができるための V' の最小値はいくらか。 R, h, g を用いて表せ。 角度とか (A) 考慮せずに? (名)

回答募集中 回答数: 0
物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
1/66