学年

質問の種類

数学 高校生

数学A 順列 円順列・重複順列 どうやって計算したら赤で線をひいいたところの答えになるかがわかりません。 教えてくださると助かります!

1章 364 基本 21 組分けの問題 6枚のカード1,2 3 4 5 6 がある 慣列 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし、各組に 少なくとも1枚は入るものとする。 (2)6枚のカードを2組に分ける方法は何通りあるか。 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。 ただし、空の箱はないものとする。 指針 (1) 6枚のカードおのおのの分け方は,A,Bの2通り。 2通り 23456 ズーム UP 重複順列,組分けの問題に関する注意点 2321337 365 前ページの例題21 や p.372 例題 25 のように, 組分けの問題には、いろいろなタイプがあ り問題の設定に応じて考えていく必要がある。 例題21では重複順列の考えを利用して いるが,その内容について更に掘り下げて考えてみよう。 ●重複列の考え方 異なるn個のものから個取る重複順列の総数は n (*) 2222 123456 ↑ 1 2 重複順列で ↑ ↑ ただし,どちらの組にも1枚は入れるから, 全部を -2 AまたはBに入れる場合を除くために A A A B B or or or or or or B B B B 単に公式として覚えているだけでは,nとrを 取り違えて,例えば (1) は, 26でなく62としてしまうミス 通通通通通通 りりりりりり (2) (1) で, A, B の区別をなくすために ÷2 (3)3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 箱 ABC カード 12 (3456 を A, B, C に分ける) -(Cが空箱になる = 3, 4, 5, 6をAとBのみに入れる) 3,4,5,6から少なくとも1枚 CHART 組分けの問題 0個の組と組の区別の有無に注意 (1) 6枚のカードを, A, B2つの組のどちらかに入れる方 | A,Bの2個から6個取 る重複順列の総数。 法は 2°=64(通り) 64-262 (通り) をしやすい。 よって、慣れないうちは指針の (1) にあるような図, または上の図の ように、各位置に何通りの方法があるかがわかるような図をかくとよい。 また、図をかくことで, 重複順列は,積の法則を繰り返し利用したものになって いることがわかり, (*) の式の原理をしっかり理解するのにも役立つ。 組分けの問題での注意点 1 組分けの問題では, 0個となる組が許されるかどうかにまず注目しよう。 (1)では, 「各組に少なくとも1枚は入る」 0枚の組はダメ) という設定であるか ら, A0枚, 組B:1~6の6枚) の分け方と (A1~6の6枚組B: 0枚) の分け方を除く必要がある。 ここで, 仮に 「1枚も入らない組があってもよ 「い」 (0 枚の組もOK) という設定ならば, 答えは2°=64 (通り) となる。 なお,(2)では,一方の組に6枚のカードすべてを入れると組の数は1となり, 2組という条件を満たさない。 すなわち, 問題文に断り書きはないが,「0枚の組 は許されない」という前提条件のもとで考えていくことになる。 (2) において ÷2 する理由 解答 このうち, A,Bの一方だけに入れる方法は よって, 組A と組B に分ける方法は 2通り (2) (1) A,Bの区別をなくして (2組の分け方)×2! = (A, B2組の分け方 ) 62÷2=31 (通り) このうち, Cには1枚も入れない方法は 24通り したがって 3'-2'=81-16=65 (通り) A, B, C の3個の箱のどれかにカード3, 4, 5, 6を入 れる方法は 34通り (3) カード 1, カード2が入る箱を, それぞれ A, B とし, (3) 問題文に「区別できな 残りの箱をCとする。 い」 とあっても、 カード (1) の 62通りの分け方のうち、 例えば (1) で B 1が入る箱, カード2が 入る箱, 残りの箱, と区 別できるようになる。 は右の①、②の分け方は別のもの (2通 り)である。 ① 4 2.3 ②2 41 5. 6 1 12. 6 2.3 て Cが空となる入れ方は、 A,Bの2個から4個取 る重複順列の総数と考え 2通り しかし, (2) では組 A,Bの区別がなくなる から ①と②は同じもの (1通り) となる。 62 ④ 円順列・重複順列 ③ 21 習(1)7人を2つの部屋 A, B に分けるとき,どの部屋も1人以上になる分け方は全 部で何通りあるか。 (2) 4人を3つの部屋 A, B, C に分けるとき, どの部屋も1人以上になる分け方は 全部で何通りあるか。 (3) 大人4人, 子ども3人の計7人を3つの部屋 A, B, C に分けるとき どの部屋 も大人が1人以上になる分け方は全部で何通りあるか。 p.366 EX 18 (1)の組分け ①〜62のうち,組の区別をなくすと同じになるものが2通りずつあ るから,(2)では÷2としているのである。 組分けの問題での注意点2 組分けの問題では, 分けるものや組に区別があるかないかをしっかり見極める ことも重要である。 例えば、 例題 21(1), (2) ではカードに区別があるが, 仮にカー ドの区別がないとした場合は, 結果はまったく異なるので、注意が必要である。 詳しくは解答編 .259 の検討参照。 カードの枚数だけに注目し, 数え上げによって 分け方を書き上げると, (1) では5通り, (2) では3通りとなる。 -6327 さ 6×3=3

解決済み 回答数: 1
数学 高校生

数学A 順列 円順列・重複順列 どうやって計算したら赤で線をひいいたところの答えになるかがわかりません。 教えてくださると助かります!

1章 364 基本 21 組分けの問題 6枚のカード1,2 3 4 5 6 がある 慣列 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし、各組に 少なくとも1枚は入るものとする。 (2)6枚のカードを2組に分ける方法は何通りあるか。 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。 ただし、空の箱はないものとする。 指針 (1) 6枚のカードおのおのの分け方は,A,Bの2通り。 2通り 23456 ズーム UP 重複順列,組分けの問題に関する注意点 2321337 365 前ページの例題21 や p.372 例題 25 のように, 組分けの問題には、いろいろなタイプがあ り問題の設定に応じて考えていく必要がある。 例題21では重複順列の考えを利用して いるが,その内容について更に掘り下げて考えてみよう。 ●重複列の考え方 異なるn個のものから個取る重複順列の総数は n (*) 2222 123456 ↑ 1 2 重複順列で ↑ ↑ ただし,どちらの組にも1枚は入れるから, 全部を -2 AまたはBに入れる場合を除くために A A A B B or or or or or or B B B B 単に公式として覚えているだけでは,nとrを 取り違えて,例えば (1) は, 26でなく62としてしまうミス 通通通通通通 りりりりりり (2) (1) で, A, B の区別をなくすために ÷2 (3)3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 箱 ABC カード 12 (3456 を A, B, C に分ける) -(Cが空箱になる = 3, 4, 5, 6をAとBのみに入れる) 3,4,5,6から少なくとも1枚 CHART 組分けの問題 0個の組と組の区別の有無に注意 (1) 6枚のカードを, A, B2つの組のどちらかに入れる方 | A,Bの2個から6個取 る重複順列の総数。 法は 2°=64(通り) 64-262 (通り) をしやすい。 よって、慣れないうちは指針の (1) にあるような図, または上の図の ように、各位置に何通りの方法があるかがわかるような図をかくとよい。 また、図をかくことで, 重複順列は,積の法則を繰り返し利用したものになって いることがわかり, (*) の式の原理をしっかり理解するのにも役立つ。 組分けの問題での注意点 1 組分けの問題では, 0個となる組が許されるかどうかにまず注目しよう。 (1)では, 「各組に少なくとも1枚は入る」 0枚の組はダメ) という設定であるか ら, A0枚, 組B:1~6の6枚) の分け方と (A1~6の6枚組B: 0枚) の分け方を除く必要がある。 ここで, 仮に 「1枚も入らない組があってもよ 「い」 (0 枚の組もOK) という設定ならば, 答えは2°=64 (通り) となる。 なお,(2)では,一方の組に6枚のカードすべてを入れると組の数は1となり, 2組という条件を満たさない。 すなわち, 問題文に断り書きはないが,「0枚の組 は許されない」という前提条件のもとで考えていくことになる。 (2) において ÷2 する理由 解答 このうち, A,Bの一方だけに入れる方法は よって, 組A と組B に分ける方法は 2通り (2) (1) A,Bの区別をなくして (2組の分け方)×2! = (A, B2組の分け方 ) 62÷2=31 (通り) このうち, Cには1枚も入れない方法は 24通り したがって 3'-2'=81-16=65 (通り) A, B, C の3個の箱のどれかにカード3, 4, 5, 6を入 れる方法は 34通り (3) カード 1, カード2が入る箱を, それぞれ A, B とし, (3) 問題文に「区別できな 残りの箱をCとする。 い」 とあっても、 カード (1) の 62通りの分け方のうち、 例えば (1) で B 1が入る箱, カード2が 入る箱, 残りの箱, と区 別できるようになる。 は右の①、②の分け方は別のもの (2通 り)である。 ① 4 2.3 ②2 41 5. 6 1 12. 6 2.3 て Cが空となる入れ方は、 A,Bの2個から4個取 る重複順列の総数と考え 2通り しかし, (2) では組 A,Bの区別がなくなる から ①と②は同じもの (1通り) となる。 62 ④ 円順列・重複順列 ③ 21 習(1)7人を2つの部屋 A, B に分けるとき,どの部屋も1人以上になる分け方は全 部で何通りあるか。 (2) 4人を3つの部屋 A, B, C に分けるとき, どの部屋も1人以上になる分け方は 全部で何通りあるか。 (3) 大人4人, 子ども3人の計7人を3つの部屋 A, B, C に分けるとき どの部屋 も大人が1人以上になる分け方は全部で何通りあるか。 p.366 EX 18 (1)の組分け ①〜62のうち,組の区別をなくすと同じになるものが2通りずつあ るから,(2)では÷2としているのである。 組分けの問題での注意点2 組分けの問題では, 分けるものや組に区別があるかないかをしっかり見極める ことも重要である。 例えば、 例題 21(1), (2) ではカードに区別があるが, 仮にカー ドの区別がないとした場合は, 結果はまったく異なるので、注意が必要である。 詳しくは解答編 .259 の検討参照。 カードの枚数だけに注目し, 数え上げによって 分け方を書き上げると, (1) では5通り, (2) では3通りとなる。 -6327 さ 6×3=3

解決済み 回答数: 1
数学 中学生

解説ありですがそれでもわかりません。 解説の解説をお願いします🙇 4問だけです。よろしくお願いします。

37 (1) 最初に同じ目が出る確率は、 6 1 37 626 また,最初は異なる目が出るが,小さい目を出した人が,もう一度さいころを振り、大きい目と同じ目が出ても引 き分けとなる。 その確率は, × 6.5 15 63 6-36 よって、 1回の勝負をして引き分けになる確率は, 1 5 11 6 36-36 (2)最初にB君が 「6」 の目を出した場合, A君が逆転勝ちをすることはできない。 最初にB君が「5」の目を出し, A君が4以下の目を出したとき,次にA君が6の目を出せば逆転勝ちとなる。 1.4 1 4 その確率は, 13x1=216 最初にB君が「4」の目を出し, A君が3以下の目を出したとき、次にA君が5以上の目を出せば逆転勝ちとな る。 その確率は, 6 1.3.x=216 62 最初にB君が「3」の目を出し, A君が2以下の目を出したとき、次にA君が4以上の目を出せば逆転勝ちとな る。 その確率は, 1.23 6 62 x=216 最初にB君が「2」の目を出し, A君が1の目を出したとき,次にA君が3以上の目を出せば逆転勝ちとなる。 A君とB君がそれぞれ1個ずつさいころを持ち、次のようなゲームをする。 [1] 2人同時にさいころを振る。 [2] 同じ目が出たときは引き分けとする。 [3] 異なる目が出たときは, 「大きい目」 を出した人は何もせず,「小さい目」 を出した方がもう一度さいこ を振る。 [4] [3] において振り直して出た目と、 「大きい目」のうち、大きい方を出した人を勝ちとし、両者が同じときに 引き分けとする。 [1]から[4]までで1回の勝負とする。 また,「小さい目」を出した人が勝ったとき、逆転勝ちと呼ぶことにする。次の問いに答えよ。 (1) 1回の勝負をして引き分ける確率を求めよ。 (2) 1回の勝負をしてA君が逆転勝ちする確率を求めよ。 (3) 1回の勝負をしてA君が勝つ確率を求めよ。 1回の勝負で引き分けとなったとき、 2回目以降は次のようなゲームを続ける。 [5] さらに2人同時にさいころを振る。 [6] 同じ目か,または, 異なる目であっても目の差が1以内は引き分けとする。 目の差が2以上になったとき 大きい目を出した人を勝ちとする。 2回目以降は, [5]から[6] までを1回の勝負とする。 (4) 1回の勝負をして引き分けとなり、2回目も引き分け,3回目でA君が勝つ確率を求めよ。 その確率は、 1-1 4 4 626-216 最初にB君が 「1」 の目を出した場合, A君が逆転勝ちをすることはできない。 4 6 よって、1回の勝負をして、A君が逆転勝ちする確率は216216216216216 54 6 4 20 5 (3)(1) より 1回の勝負をして, 引き分ける確率は である。 11 36 11 25 よって、1回の勝負をして, 勝ち負けが決まる確率は,1-3636 25.1 25 A君B君のどちら勝つかは 1/2の確率なので、1回の勝負をしてA君が勝つ確率は、36×2=72 (4) A君の方が大きい目を出し、 目の差が2以上になるのは,次の場合である。 (A,B)=(6,4),(6,3),(6,2), (6,1),(5,3),(5,2),(5,1),(4,2),(4,1),(3,1)の10通り。 よって、2回目以降の勝負のルールの中で, A 君が勝つ確率は, 10 5 62 18 同様に考えて、2回目以降の勝負のルールの中で, B君が勝つ確率は、 5 18 5 84 ゆえに、2回目以降の勝負のルールの中で, 引き分ける確率は, 1-2・ = 18 18-9 したがって, 1回の勝負をして引き分けとなり、 2回目も引き分け, 3回目でA君が勝つ確率は, 11 4 5 36 xx18 55 =1458 (

未解決 回答数: 5
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

解決済み 回答数: 1
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1
1/69