学年

質問の種類

数学 高校生

n進法についてです。どうしてマーカーで印をつけた式ができるのかがわからないです。

基礎トレ 88 難易度4 目標時間20分 www nを4以上の自然数とする。 数 2, 12, 1331 がすべてn進法で表記されているとして, 2=1331 が成り立っている。このときはいくつか。 十進法で答えよ。 ( 京都大学) n進法で2, 12, 1331 と表記される数は, 10 進法ではそれぞれ, 2, n+2, n°+3n² +3n+1 になるので 基礎トレ 41 ① 2n+2=n+3n2+3n+1 次に, 2(k+1) ≧ (k+2)3 ...... ②を証明する。 (左辺) (右辺) = (n+1)3 =2(k+1)-(k+23 =2(k3+3k2+3k+1)- (k^3+6k2+12k+8) =2k°+6k2+6k+2-k-6k-12k-8 n=4 のとき 左辺 = 64, 右辺 =125 n=5のとき 左辺 = 128, 右辺 =216 n=6 のとき 左辺 =256, 右辺 =343 n=7 のとき 左辺 = 512, 右辺 =512 n=8 のとき 左辺 = 1024, 右辺 =729 より,答えの1つが n =7であることがわかる。 また,n≧8 のとき, 2+2 (n+1)と推定でき, これを数学的帰納法で証明する。 (i) n=8 のとき成り立つのは明らかである。 (ii) n=k のとき成り立つと仮定すると 2k+2> (k+1)3 両辺を2倍すると2k+3>2(k+1)3 数学的帰納法 (不等式の場合) =k-6k-6 ここで,f(k)=k-6k-6 とすると, f'(k) =3k2-6 k≧8のとき、f'(k)>0より,f(k)は単調増加 である。 さらに,f(8)=458より k≧8 のとき f(k) > 0 よって、②が成り立つことがわかる。 ①,②より2k+3>(k+2)3 n=k+1のときも成り立つ。 (i), (ii)より, 命題は成り立つ。 よって、答えは n = 7 のみとなる。 答 すべての自然数nで不等式が成り立つことを証明するには (i) 最初の数のとき, 不等式が成り立つことを示す。 自然数は1から始まるので, 通常は n=1のときを示すが, 今回は "n≧8の自然数” なので, n=8 のときを示す。 (ii) n=k のとき, 不等式が成り立つと仮定すると, n=k+1のときも成り立つことを示す。 今回は,n=kのとき,2k+2> (k+1)3であり,これが成り立てば, n=k+1 のとき, すなわち, 2k+3> (k+2)が自動的に成り立つことを示す。 まず, 2k+2> (k+1)3 の左辺を2k+3 にしたいので,両辺を2倍すると①の式が得られる。 「2k+3が2(k+1)より大きい」がわかっていて 「2+3 が (k+2) より大きい」を示したいので, 「2(k+1)が (k+2) 以上である」 を示せばよい。

回答募集中 回答数: 0
1/500