学年

質問の種類

国語 中学生

答えがなくて困っています。 このテキストの6-9、14-17、18-21の答えがあったり分かったりすれば教えて欲しいです。

17 下一段・下二段 150 50 堪へ (3) (1) 動詞 ③ 16 ①まう 文献にも このようなことは、 かうし 2 反復学習で確認 1 次の傍線部①~⑤の動詞について、それぞれの活用の行種類と活用 書きなさい。 (こよなくやつれてのみこそ詣づと知りたれ。 この上なく粗末な格好で参詣するものだと(私は)知っている。 (かかることは、文にも見えず、 ③ 格子など上ぐるに見いだしたれば、 2 3点×3 (2) 〔枕〕 3 次の傍線部①~⑧のうち、下二段活用の動詞を四つ選んで番号を書き、 かつ活用の行と活用形を書きなさい。 [徒然] 〔徒然〕 蓮を 1 家にはちすを植ゑて愛せし時の楽なり。 → 賞玩した時に作った楽曲である。 〔方丈〕 〔蜻蛉〕 (1) 人数を知らんとて、四五両月を数へたりければ、 数えたところ、 亡くなった人の数を知ろうとして、 [方丈〕 〔宇治拾遺〕 さいしゅう 音に聞きめでてまどふ。 上げるので、外を見いだしたところ、 すまひ 4蹴よといひつる相撲に 蹴れと いった かぐや姫のうわさを聞いて恋い慕い、心を乱す。 積もり 消ゆる様、罪障にたとへつべし。 〔竹取〕 (4) (3) (雪が積もったり消えたりする様は、きっと人の(犯す)罪障にたとえられるだろう。 (竹取) 綱を引きすぐして網絶ゆるすなはちに、 なくなった瞬間に、 引っ張りすぎて 番号 活用の行 活用形 番号 活用の行 活用形 ● ラ行下二段活用・連用形 行 活用 形 形 サ行 終止 形 行 形 ② 活用 行 3 活用 行 行 行 形 行 形 ④ 行 形⑤ 活用 形 34点×4 行 活用 2 次の〔内の動詞は下一段、または下二段活用動詞ですが、いずれも 終止形で示しています。 それぞれを適切に活用させて書きなさい。 例 下よりきざしつはるに〔堪らずして落つるなり。 5×5 活用の種類や行が紛れやすい OKKEN すい (第2 下二段活用の動詞 〔徒然〕 う こころう ところう ま ま ま 木の下(内部)から兆しが芽ぐんでくるのに堪えられないで(木の葉が) ア行―得・心得・所得(三語) ザ行(交雑)ず(一語) だいこくでん 1 大極殿に行きてこれを〔ける]。 〔古今著聞〕 かな ひい うれ 大極殿に これを ダ行出づ奏づ・秀づ ハ行与ふ・憂ふ・数ふC かな さ ( しばし〔奏づ〕て後、抜かんとするに、おほかた抜かれず。 〔徒然〕 ヤ行ー甘ゆ・覚ゆ・消ゆ・聞こゆ・越ゆ・冴ゆ・萌ゆ・見ゆ 演じた後で、(鼎を頭から)抜こうとすると、 全く かなえ う う (3) ③ [飢う]ず、寒からず、風雨にをかされずして、徒然 ワ行ー植う・飢(餓)う・据う(三語) 飢えることなく、寒くなく、 冒されることもなく、 tintetise( 3 文章問題で定着 50 50 ※ ●語注 どこでもよい、 しばらくの間 いづくにもあれ、しばし旅立ちたるこそ、目さむる心地すれ。そのわたり、ここかしこ見ありき、田舎びたる 目がさめるような(新鮮な)気持ちがする。そのあたり、 見てまわり、 見慣れないことばかりが 多い。 所、山里などは、いと目馴れぬことのみぞ多かる。都へ便り求めてやる。 「そのこと、かのこと、便宜に忘るな。 ふみ ※びんぎ つてを求めて (その手紙に 都合のよい時に忘れるな。」 などと言い送るのは おもしろい。 そのような旅先でこそ、 など言ひやるこそをかしけれ。さやうの所にてこそ、よろづに心づかひせらるれ。持てる調度まで、よきはよく、 何事につけても自然と心遣いがされるものだ。 持っている道具類まで、 芸能のできる人や容貌のよい 能ある人、かたちよき人も、常よりはをかしとこそ見ゆれ。 P 36 ° いつもよりは興趣深く 見えるものだ。 〔徒然草・一五〕 KG 問 次の語はすべて下二段活用の動詞です。 活用表を完成させなさい。 基本形語幹行 未然形 連用形 終止形 連体形 已然形 命令形 萌ゆ ※いづくにもあれ「あれ」はラ 変動詞の命令形。 命令形の許 容・放任の用法。 ※便宜─「べんぎ」ではなく「び んぎ」と読む。都合のよい時・よ い機会、便り・手紙などの意。 能ある人ここは、芸事の能 力がある人の意。 問二 二重傍線部①~⑤の動詞について、活用の行・種類と、文中での活 用形を答えなさい。 おと ①さむる ②目馴れ ③求め ④忘る ⑤見ゆれ ふ う 失す ひい 秀づ ⑤ ③ ① さだ 定む に 逃ぐ ( 46 問三 読む 右の文章における作者の主張が最も端的に表れた一文を抜き出 して、その最初の五字を書きなさい。 6点

未解決 回答数: 0
数学 高校生

命題の証明のところなんですけど、意味がわかりません💦誰か教えてください🙏🙏🙏

DO 項 3 本例題 43 対偶を利用した命題の証明 79 00000 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (2)626 ならば 「| a +6|>1 または |a-b>3」 (1) x+y=2 ならば 「x≦1 または y≦1」 CHART & SOLUTION p.76 基本事項 6 対偶の利用 pomu 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。 そこで, 対偶が真であることを証明し、もとの命題も真である, と証明する。 条件 x または y≦1」 の否定は 「x>1 かつy>1」 (2)対偶が真であることの証明には、次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 2章 6 =0 #0 とされる。 「x>1 かつy>1」 ならば x+y= これを証明する。 x>1, y>1 から x+y> +1 すなわち x+y>2 よって, x+y≠2 であるから, 対偶は真である。 したがって,もとの命題も真である。 (2) 与えられた命題の対偶は 「α+ 6≦1 かつ a-b≦3」 ならば2+62<6 これを証明する。 |a+6|≦1, |a-b≦3 から (a+b)2≦12, (a-b)2≦32 (a+b)2+(a-b)2≦1+9 ←pg の対偶は gp ←x>ay>b ならば x+y>a+b (p.54 不等式の性質) A²=A² ->1 よって ゆえに よって 2a2+62) ≦10 a+b25 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + 625 と 5<6 から a2+62<6 ら選べ POINT 条件の否定条件, gの否定を,それぞれ,g で表す。 かつ または pまたはq かつ PnQ=PUQ PUQ=PnQ PRACTICE 43º 文字はすべて実数とする。 次の命題を, 対偶を利用して証明せよ。 (1)x+y>a ならば 「x>α-b または y>b」 (2)xについての方程式 ax+b=0がただ1つの解をもつならば α≠0 論理と集合

回答募集中 回答数: 0
1/500