学年

質問の種類

数学 高校生

数学の二次関数の決定について質問です。 写真一枚目の(2)がわかりません。 私の回答は写真2枚目なのですが、どこが間違っているのかわかりません。答えが違うのでどこかが必ず間違っていると思うのですが、何度計算しても正解にたどり着きません。私は、基本形を使わずに一般形を使って問... 続きを読む

基本 例題 94 2次関数の決定 0000 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 (1)頂点がx軸上にあって, 2点 (0, 4), ( - 4,36) を通る。 ( (2) 放物線y=2x2 を平行移動したもので,点 (2,4) を通り,頂点が直線 y=2x-4上にある。 指針 (1),(2) ともに頂点が関係するから、頂点のx座標をとおいて, 基本形 y=a(xb)+α (1) 頂点がx軸上にあるから g=0 からスタートする。 (2)平行移動によってx2の係数は不変。 したがって, a=2である。 また、頂点(b,g)が直線 y=2x-4上にあるから g=2ヵ-4 (1) 頂点がx軸上にあるから, 求める 2次関数は 頂点の座標は (p, 0) 解答 y=a(x-p)² と表される。 ...... このグラフが2点 (0, 4), (-4,36) を通るから ap²=4 * S (1) ①, a(p+4)²=36 ② ① ×9 と ② から lap=ap+4)2 α≠0 であるから 9p2=(p+4)2 整理して よって (p+1)(2)=0 -p-2=0 これを解いて p=-1,2 ①から p=1のとき a=4, p=2のとき α=1 したがって y=4(x+1), y=(x-2)2 (y=4x2+8x+4, y=x2-4x+4でもよい) (2)放物線y=2x2を平行移動したもので,頂点が直線 y=2x-4上にあるから,頂点の座標を(p2p4) とす ると, 求める2次関数は 4(-4-p)²=(p+4)² ① × 9 から 9ap^=36 これとa (p+4)=36か 5 9ap²=a(p+4)² α≠0 であるからこの 両辺をαで割って 9p²=(p+4)² 右辺を展開して 9p=p2+8p+16 整理すると p²-p-2=0 y=2(x-p)'+2p-4 とされる。 ****** ① このグラフが点 (24) を通るから 2(2-p)²+2p-4=4 y-2- 整理して p2-3p=0 よって p=0,3 2 p=0 のとき, ①から y=2x2-4 p=3のとき, ①から y=2(x-3)'+2 (y=2x-12x+20 でもよい y=2x2-4 0 /23 y=2(x-3)2+2

解決済み 回答数: 2
数学 高校生

二次関数の決定についての質問です 2枚目のノートの解き方でやったのですが、p=−1しかでてこないです どうやったら2を導き出せますか?

基本 例題 94 2次関数の決定 (3) 00000 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 (1頂点がx軸上にあって, 2点 (0, 4), (-4, 36) を通る。 (2) 放物線y=2x2 を平行移動したもので, 点 (2,4)を通り, 頂点が直線 y=2x-4上にある。 指針 (1),(2)ともに頂点が関係するから、頂点のx座標をかとおいて、 基本形 y=a(x-D2+α からスタートする。 (1) 頂点がx軸上にあるから g=0 (2)平行移動によってxの係数は不変。 したがって, a=2である。 また、頂点(p,q) が直線y=2x-4上にあるから g=2p-4 解答 (1) 頂点がx軸上にあるから 求める 2次関数は y=a(x-p 頂点の座標は (p.0) と表される。 **** このグラフが2点 (0, 4), (-4, 36) を通るから ap²=4 ①, a(b+4)2=36 (a) ..... ② ◄(-4-p)²=(p+4)² ① ×9 と ② から 9ap²=a(p+4)² a≠0 であるから 9p²=(p+4)² 整理して2-p-2=0 よって (n+1)(2)=0 これを解いて p=-1,2 ①から =-1 のとき a=4, p=2のとき α=1 したがって y=4(x+1)', y=(x-2)2 (y=4x2+8x+4,y=x2-4x+4でもよい) (2)放物線 ①×9から 9q=3 | これとα(p+4)=36か 5.9ap²=a(p+4) a≠0であるから,この 両辺を αで割って 9p2=(p+4)2 右辺を展開して

解決済み 回答数: 1
1/9