数学
高校生
解決済み

二次関数の決定についての質問です

2枚目のノートの解き方でやったのですが、p=−1しかでてこないです
どうやったら2を導き出せますか?

基本 例題 94 2次関数の決定 (3) 00000 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 (1頂点がx軸上にあって, 2点 (0, 4), (-4, 36) を通る。 (2) 放物線y=2x2 を平行移動したもので, 点 (2,4)を通り, 頂点が直線 y=2x-4上にある。 指針 (1),(2)ともに頂点が関係するから、頂点のx座標をかとおいて、 基本形 y=a(x-D2+α からスタートする。 (1) 頂点がx軸上にあるから g=0 (2)平行移動によってxの係数は不変。 したがって, a=2である。 また、頂点(p,q) が直線y=2x-4上にあるから g=2p-4 解答 (1) 頂点がx軸上にあるから 求める 2次関数は y=a(x-p 頂点の座標は (p.0) と表される。 **** このグラフが2点 (0, 4), (-4, 36) を通るから ap²=4 ①, a(b+4)2=36 (a) ..... ② ◄(-4-p)²=(p+4)² ① ×9 と ② から 9ap²=a(p+4)² a≠0 であるから 9p²=(p+4)² 整理して2-p-2=0 よって (n+1)(2)=0 これを解いて p=-1,2 ①から =-1 のとき a=4, p=2のとき α=1 したがって y=4(x+1)', y=(x-2)2 (y=4x2+8x+4,y=x2-4x+4でもよい) (2)放物線 ①×9から 9q=3 | これとα(p+4)=36か 5.9ap²=a(p+4) a≠0であるから,この 両辺を αで割って 9p2=(p+4)2 右辺を展開して
ap = 40 acp + 4) = 36 Ra (p+8p+(6)=36 ap² + 8ap +16 α = 36 -② ap²+dap+16α=36 =4 894+16a=32 8a(4+1)=32
2次関数

回答

✨ ベストアンサー ✨

そもそも、あなたの最後から1つ手前の式から
p=-1が出ているのがおかしいようです
最後から1つ手前の式からリカバリーする方針で図に描きました

くるみ

ありがとうございます!

この回答にコメントする
疑問は解決しましたか?