学年

質問の種類

数学 高校生

なぜ2の最後って積で確率を求めるのですか?

422 重要 例題 56 図形上の頂点を動く点と確率 0000 円周を6等分する点を時計回りの順に A, B, C, D, E, Fとし, 点Aを出発点 として小石を置く。 さいころを振り, 偶数の目が出たときは2, 奇数の目が出た ときには1だけ小石を時計回りに分点上を進めるゲームを続け、最初にAに ちょうど戻ったときを上がりとする。 (1) ちょうど1周して上がる確率を求めよ。 (2) ちょうど2周して上がる確率を求めよ。 指針 さいころを振ることを繰り返すから, 反復試行である。 (1) 1周して上がる → 偶数の回数m, 奇数の回数nの 方程式を作る。 [北海道] 基本52 重要 例題 さいころを続け 率は100 6 数 指針 (ア) 求め (イ)確 pk+1 かし や CH ..... 1,2をいくつか足して6にする。 F 偶 1周目にAにあってはいけない。 E BAはともに5だけ進むから,同じ確率になる。 D (2) 2周して上がる ...... A → F, F → B, B → A と分ける。 このときA→Fと (c) (1.4)のとき 2m+n=6 (1) ちょうど1周して上がるのに, 偶数の目が回 奇数の目がn と 解答 (m,nは0以上の整数) よって (m, n)=(0, 6), (1, 4), (2, 2), (3, 0) これらの事象は互いに排反であるから, 求める確率は ①②③④⑤ 43 ぐききき 5! [14] (2,2)のとき 2 +oC(1/2)(1/2)+(1/2)^(1/2)+(1/2)=1 64 回出ると (2) ちょうど2周して上がるのは,次の[1]→[2] → [3] の順に進む場合である。 [1] A から F に進む5逾[2] F から B に進む (A には止まらない) [3]BからAに進む進む (1) と同様に考えて, [1] ~ [3] の各場合の確率は ①②③④ [1] 2m+n=5から き この場合の確率は (m, n)=(0, 5), (1, 3), (2, 1) E (1/2)+(1/2)(1/2)+oca(1/2)(1/2)=3/2 [2] 偶数の目が出るときであるから,確率は 2.2 [3] 確率は[1] と同じであり よって, 求める確率は 21 × 32 21 23 12 +C 12 [3] BからAに進むと 21 441 5だけ進む。 これは [1] のAからFに進む (5 け進む)のと同じであり × 32 2048 確率も等しい。 さいこ 答 確率を 答 OES ここ PR- Þ 両 練習動点Pが正五角形ABCDE の頂点 A から出発して正五角形の周上を動くものと © 56 る。Pがある頂点にいるとき, 1秒後にはその頂点に隣接する2頂点のどちらか それぞれ確率 1/12 で移っているものとする。 (1)PがAから出発して3秒後にEにいる確率を求めよ。 練習 5 57 (2)PがAから出発して4秒後にBにいる確率を求めよ。 (3)PがAから出発して9秒後にAにいる確率を求めよ。 [類 産能大

解決済み 回答数: 1
数学 高校生

なぜ(2)の答えの最後ってかけるのですか?

422 重要 例題 56 図形上の頂点を動く点と確率 0000 円周を6等分する点を時計回りの順に A, B, C, D, E, F とし,点Aを出発 として小石を置く。 さいころを振り, 偶数の目が出たときは2,奇数の目が出た ときには1だけ小石を時計回りに分点上を進めるゲームを続け,最初に点A ちょうど戻ったときを上がりとする。 (1) ちょうど1周して上がる確率を求めよ。 (2) ちょうど2周して上がる確率を求めよ。 指針 さいころを振ることを繰り返すから, 反復試行である。 (1) 1周して上がる 1,2をいくつか足して6にする。 F → 偶数の回数m, 奇数の回数nの方程式を作る。 (2) 2周して上がる ・・・・・・ 1周目に Aにあってはいけない。 A→F, FB, B → A と分ける。 このときA→Fと BAはともに5だけ進むから、同じ確率になる。 E (1) ちょうど1周して上がるのに, 偶数の目が回奇数の目がn (t) 4)のとき と 解答 よって きききき 5! 1141 2.21のとき 2m+n=6 (mnは0以上の整数) (m, n)=(0, 6), (1, 4), (2, 2), (3, 0) これらの事象は互いに排反であるから, 求める確率は 43 (1/2)+(1/2)(1/2)+(1/2)(1/2)+(1/2)-47 【北海道大) 回出るとする (2) ちょうど2周して上がるのは,次の[1][2]→[3] の順に進む場合である。 [1] A から F に進む[2]F から B に進む (A には止まらない) [3]BからAに進む進む2891 (1) と同様に考えて, [1] ~ [3] の各場合の確率は 例題 57 重要 例 「さいころを続けて 率は 100 Ck × 6100 指針 (ア) 求める (イ)確率 +1 と かし,砕 や階乗 CHAR 解答 さいころ 確率をか ここで Dk+1 ① ② ③ ④ [1] 2m+n=5から (m, n)=(0, 5), (1, 3), (2, 1) PR 両辺 ぐぐきき +4C1 この場合の確率は1/2)+.(1/2)(1/2)+(1/2)^(1/2)=13/12 C これ 41 2.21 [2] 偶数の目が出るときであるから, 確率は 1 よっ [3] BからAに進むとき [3] 確率は [1]と同じであり 23 21 DE 32 よって, 求める確率は 21 1 21 441 × 32 2 32 2048 5だけ進む。 これは [1] のAからFに進む(5だ け進む)のと同じであり、 確率も等しい。 練習動点Pが正五角形ABCDE の頂点 A から出発して正五角形の周上を動くものとす ⑨ 56 る。Pがある頂点にいるとき, 1秒後にはその頂点に隣接する2頂点のどちらかに それぞれ確率 1/3で移っているものとする。 (1)PがAから出発して3秒後にEにいる確率を求めよ。 (3)PがAから出発して9秒後にAにいる確率を求めよ。 (2)PがAから出発して4秒後にBにいる確率を求めよ。 〔類 産能大] PR+ こ 練習 ⑤ 57 よし

解決済み 回答数: 1
数学 高校生

マルで囲ったとこがどうしてこうおけるのかわかりません😭教えてください!!

EX 428 基本 例題 59 条件付き確率の計算 (2) ... 場合の数利用 00000 3個のさいころを同時に投げ, 出た目の最大値をX, 最小値を Yとし、その X-YをZとする。 (1) Z=4 となる確率を求めよ。 (2) Z=4 という条件のもとで,X = 5 となる条件付き確率を求めよ。 / P.425 基本 指針 (1) 1≦X66 から, Z=4となるのは, (X, Y) = (5,1) (62) のときで (2) Z4となる事象をA, X=5 となる事象をBとすると, 求める確率は 条件付き ある。この2つの場合に分けて, Z4 となる目の出方を数え上げる。 確率 P(B)である。 (1)n(A),n(A∩B)を求めているから, 全体をAとしたときのA∩Bの割合 n(A∩B) PA(B)= n(A) を利用して計算するとよい。 (1) Z4となるのは, (X, Y) =(5, 1), 6, 2 のとき 解答 [1] (X, Y)=(51) のとき このような3個のさいころの目の組を, 目の大きい方 から順にあげると, 次のようになる。 [2] (X, Y)=(62) のとき [1] と同様にして,目の組を調べると Z=X-Y=4から X=Y+4 X≦6 であるためには Y = 1 または Y = 2 (5, 5, 1), (5, 4, 1), (5,3, 1), (5,2,1), (5,1,1) 3! 3! [1] の目の出方は + 3×3! + =24(通り) 21 2! (6,6,2), (6,5,2), (6,4,2), (6,3,2), (6,2,2) [2] の目の出方は 3! 3! 組 (5.5.1)と組 (5,1,1)については、 同じものを含む順列を利 用。(同じものがない1 個の数が入る場所を選ぶ と考えて, C, としても よい。) + 3×3! + -=24(通り) 2! 2! 以上から,Z4となる目の出方は 24+24=48 (通り) 他の3組については順列 を利用。 よって, 求める確率は 48 2 63 9 基本 例題 60 「10本のくじの中に (1) 初めにaが1 (ア) a, b ともに (2) 初めが1本 る確率を求めよ 指針 解答 順列の考え 「a, b の順に 果がb の結 算する。 (1) a (ア) 求め (イ) b に分け 当たることを (1)a が当た Bとする。 7 (ア) P(A)= P (イ) b が当 があり, 求める確 P (2) a, b {ax, a C に排反であ と、求める確率は (2)Z4となる事象を A, X=5 となる事象をBとするP. (B) P(B)=n(A∩B)_24 1 P(A∩B)_n(A∩B) n(A) 48 2 P(A) n(A) POINT 条件付き確率はP(B)=P(A∩B) かP(B)= P(A) n(ANB) で計算 n(A) 練習 2個のさいころを同時に1回投げる。 出る目の和を5で割った余りをX.出る目の ③ 59積を5で割った余りをYとするとき、次の確率を求めよ。 (1) X = 2 である条件のもとで Y=2 である確率 (2) Y = 2 である条件のもとで X=2である確率 p.436 EX42.45 検討上の例題の (1) と等しい。 一 練習 8本のくじの ② 60 めに aが1本 (1) 初めに (2) a, bet

未解決 回答数: 1