学年

質問の種類

数学 高校生

左下の 3C2 ってなんですか?

33 重要 例題 50 平面上の点の 右の図のように,東西に4本, 南北に4本の道路が ある。地点Aから出発した人が最短の道順を通って 地点Bへ向かう。このとき,途中で地点を通る確 率を求めよ。 ただし、各交差点で,東に行くか, 北 に行くかは等確率とし,一方しか行けないときは確 1でその方向に行くものとする。 CHART & THINKING A 求める確率を A→P→Bの経路の総数 ABの経路の総数 から、 4C3×1 6C3 とするのは誤り! この理由を考えてみよう。 は,どの最短の道順も同様に確からしい場合の確率で,本間 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。例えば, A 1/2×12×1/2×1/2×1×1=1/6 PI1Bの確率は A 1/2×1/2×1/2×11×1=1/ 1PBの確率は A よって、Pを通る道順を, 通る点で分けたらよいことがわかるが, どの点をとればよいだろ うか? 解答 右の図のように、地点 C, C', P' をとる。 Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順 AC'′ →C→P→B この確率は1/2×1/2×1/2×1×1×1=1/ 1 x1x1 8 [2] 道順AP'′ →P→B (9) この確率は 3 16 よって、求める確率は1/2+3 5 8 16 16 P' P A CC CPは1通りの道順であ ることに注意。 進む。 [1] [2]○○○と進む。 ○には2個と1個 が入る。

未解決 回答数: 1
数学 高校生

写真の質問に答えてください!

産率と漸化 発展 例題 102 基礎例題 900000 1個のさいころを繰り返し投げ, 3の倍数の目が出る回数を数える。 今, ぃころをn回投げるとき、3の倍数の目が奇数回出る確率を とする。 (1) Pots を で表せ。 CHART GUIDE (2) n式で表せ。 確率の問題 [中央大〕 だから、3の倍数以外の 2回目と(n+1)回目に注目して漸化式を作ろ (1)回投げて3の倍数の目が奇数回出るとき、 次の2つの場合がある。 [1] n回目までに3の倍数の目が奇数回出て, (n+1)回目に3の倍数以外の目が出る。 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に3の倍数の目が出る。 目は1-9になると 3章 いいますが、 回目 (n+1)回目 発 展 P1 学 13の倍数以外 D [2] 3の倍数 なぜが 3の倍数の確率に 3の倍数は36の2つ 解答 2 さいころを1回投げて、3の倍数の目が出る確率は 1 6 さいころを (n+1) 回投げて3の倍数の目が奇数回出るのは、 次の2つの場合がある。 3なるのでしょうか? [ 7回目までに3の倍数の目が奇数回出て,(n+1)回目に[1]の確率×(1-1) 13の倍数以外の目が出る場合 [2] n回目までに3の倍数の目が偶数回出て, (n+1) 回目に [2]の確率(1-PJx13 3の倍数の目が出る場合 [1] [2] は互いに排反であるから Pat Q (1)から =(1/2)+(1-12×1/2=1/01/1 ゆえに、数列 pt1 Pan-1 2 3 (P-1) 数列{po-1-12 は公比/1/3の等比数列で、初項は 1 1 1 一 3 ゆえに 102 Pa 2 6 =

未解決 回答数: 0
数学 中学生

解説ありですがそれでもわかりません。 解説の解説をお願いします🙇 4問だけです。よろしくお願いします。

37 (1) 最初に同じ目が出る確率は、 6 1 37 626 また,最初は異なる目が出るが,小さい目を出した人が,もう一度さいころを振り、大きい目と同じ目が出ても引 き分けとなる。 その確率は, × 6.5 15 63 6-36 よって、 1回の勝負をして引き分けになる確率は, 1 5 11 6 36-36 (2)最初にB君が 「6」 の目を出した場合, A君が逆転勝ちをすることはできない。 最初にB君が「5」の目を出し, A君が4以下の目を出したとき,次にA君が6の目を出せば逆転勝ちとなる。 1.4 1 4 その確率は, 13x1=216 最初にB君が「4」の目を出し, A君が3以下の目を出したとき、次にA君が5以上の目を出せば逆転勝ちとな る。 その確率は, 6 1.3.x=216 62 最初にB君が「3」の目を出し, A君が2以下の目を出したとき、次にA君が4以上の目を出せば逆転勝ちとな る。 その確率は, 1.23 6 62 x=216 最初にB君が「2」の目を出し, A君が1の目を出したとき,次にA君が3以上の目を出せば逆転勝ちとなる。 A君とB君がそれぞれ1個ずつさいころを持ち、次のようなゲームをする。 [1] 2人同時にさいころを振る。 [2] 同じ目が出たときは引き分けとする。 [3] 異なる目が出たときは, 「大きい目」 を出した人は何もせず,「小さい目」 を出した方がもう一度さいこ を振る。 [4] [3] において振り直して出た目と、 「大きい目」のうち、大きい方を出した人を勝ちとし、両者が同じときに 引き分けとする。 [1]から[4]までで1回の勝負とする。 また,「小さい目」を出した人が勝ったとき、逆転勝ちと呼ぶことにする。次の問いに答えよ。 (1) 1回の勝負をして引き分ける確率を求めよ。 (2) 1回の勝負をしてA君が逆転勝ちする確率を求めよ。 (3) 1回の勝負をしてA君が勝つ確率を求めよ。 1回の勝負で引き分けとなったとき、 2回目以降は次のようなゲームを続ける。 [5] さらに2人同時にさいころを振る。 [6] 同じ目か,または, 異なる目であっても目の差が1以内は引き分けとする。 目の差が2以上になったとき 大きい目を出した人を勝ちとする。 2回目以降は, [5]から[6] までを1回の勝負とする。 (4) 1回の勝負をして引き分けとなり、2回目も引き分け,3回目でA君が勝つ確率を求めよ。 その確率は、 1-1 4 4 626-216 最初にB君が 「1」 の目を出した場合, A君が逆転勝ちをすることはできない。 4 6 よって、1回の勝負をして、A君が逆転勝ちする確率は216216216216216 54 6 4 20 5 (3)(1) より 1回の勝負をして, 引き分ける確率は である。 11 36 11 25 よって、1回の勝負をして, 勝ち負けが決まる確率は,1-3636 25.1 25 A君B君のどちら勝つかは 1/2の確率なので、1回の勝負をしてA君が勝つ確率は、36×2=72 (4) A君の方が大きい目を出し、 目の差が2以上になるのは,次の場合である。 (A,B)=(6,4),(6,3),(6,2), (6,1),(5,3),(5,2),(5,1),(4,2),(4,1),(3,1)の10通り。 よって、2回目以降の勝負のルールの中で, A 君が勝つ確率は, 10 5 62 18 同様に考えて、2回目以降の勝負のルールの中で, B君が勝つ確率は、 5 18 5 84 ゆえに、2回目以降の勝負のルールの中で, 引き分ける確率は, 1-2・ = 18 18-9 したがって, 1回の勝負をして引き分けとなり、 2回目も引き分け, 3回目でA君が勝つ確率は, 11 4 5 36 xx18 55 =1458 (

未解決 回答数: 5
数学 高校生

どこで計算ミスしているか教えてください💦

18 重要 例題 5 やや複雑なくじ引きの確率 00000 当たり3本はずれ 7本のくじをA,B2人が引く。 ただし, 引いたくじは もとに戻さないものとする。 まずAが1本引き, はずれたときだけAがもう1本引く。次にBが1本引き、 はずれたときだけBがもう1本引く。 このとき, A, B が当たりくじを引く ミス 確率 P(A),P(B) をそれぞれ求めよ。 NG CHART SOLUTION [類 大阪女子大 ] 基本 52 重要 3つ 玉が ある この 311 (1) (2) 複雑な事象の確率 排反な事象に分解する Bが当たりくじを引くには [1] Aが1回目で当たり,Bが1回目か2回目に当たる。 [2] Aが1回目ははずれて,2回目で当たり,Bが1回目か2回目に当たる。 [3] Aが1回目も2回目もはずれて、Bが1回目か2回目に当たる。 の3つの場合がある。 本問のように複雑な事象については,変化のようすを 樹形図で整理し、樹形図に 確率を書き添えると考えやすい。 CHZ 解答 3 Aが1回目で当たりを引く事象の確率は 10 Aが1回目ではずれを引き 2回目で当たりを引く事象の確率は 7 3 17 10 9 30 × これらの事象は互いに排反であるから 3 7 16 8 P(A)=- + 10 30 30 15 解 箱A 解玉1 (1) 玉を (2) (8)(A 当たるときを〇 はずれ るときを×とすると A B Bが当たりくじを引くには,次の3つの場合がある。 [1] Aが1回目で当たり,Bが1回目か2回目に当たる [1] [2] Aが1回目ではずれて 2回目で当たり,Bが1回目か2 回目に当たる 032 2-8 7-9 98 2-9 ( BO 10 P(B)= + + 3/2 72 7 32 6 20 10\9 98 10 9 8 [3] Aが2回ともはずれて,Bが1回目か2回目に当たる [2] xO- [1], [2], [3] の各事象は互いに排反であるから 2-8 73 6-8 2-7 10 9 . + • 8 7 8 ( 7 6/3 + • • 10 9 8 53 87 = 18 13 3 [3] xx -+ 8 + = 76 120 800 3-7 10 15 10 9

解決済み 回答数: 1
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

解決済み 回答数: 1
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1
1/107