学年

質問の種類

数学 中学生

この問題は箱ひげ図の応用問題なのですが、なぜ初めに累積度数を計算するのでしょうか?

ⓒ P.13 生徒に対し, 国 , 組ごとの国 表したもので テストを行った。 下の表は,組ごとのテスト の得点を度数分布表にまとめたものである。 で比べ 度数(人) 階級(点) 1組 累積 2組 累積 3組 累積 以上 未満 45~ 50 50~ 55 55 60 60 ~ 65 65 70 (70 757 75~80 90100(点) 543 7 7 7 1 | 5 9 12 19 合計 34 23 26 27 26 33 32 32 1 34 33 1 33 33 345136 4616 2 420745133 12 13 3728 185/C して正し びなさい。 170 もっと 点が最も 下の図のア~ウの箱ひげ図は, 1組, 2組,3 組のテストの得点のいずれかを表している。 1組, 2組 3組のテストの得点の箱ひげ図を, ア~ウからそれぞれ選びなさい。 一位範囲 136 ア 四分位 ① いのは 一日太 アルゼンチン ブラジル スイス スペイン ポルトガル メキシコ デンマーク コロンビア 40 45 50 55 60 65 70 75 80点) 中 はじめに 第2四分位数 (中央値)がどの階級にふくま れるかを考える。平 各組で累積度数を計算しておく。 人数 じで ■ 得点が最も低 全 “から、四分位範 3組はデータの個数が33個だから、 データの小さい 方から17番目の値が第 2 四分位数である。 表から,そのデータは65点以上70点未満の階級にふ くまれるから, 3組の箱ひげ図はウとわかる。 は、 この箱ひげ図から読みとれることについて、 下 しょう。 ぶっと 180cmを基準に考えると、日本代表では、身長 である。また、身長が180cm以上の選手が半 ・日本代表より四分位範囲が小さいチームの チームは、およそ半数の選手の身長が中 考えてみようと 小さいのはC組。 次に,第1四分位数がどの階級にふくまれるかを考える。 『分位数はデータを小さい順に 1組はデータの個数が34個だから、 データの小さいる値を表しています。 データ 方から9番目の値が第1四分位数である。 “の平均値として計算するこ 表から、そのデータは50点以上55点未満の階級にふームの選手の数が23人なの一 くまれるから、 1組の箱ひげ図はイとわかる。 気になっています。 ■は等しい。 2組の箱ひげ図は残ったアである。 得点が70点以下 1組 ① ■25%である。 2組 ア れ身長の低 各チームで、 第1四分位数, ウ G

解決済み 回答数: 1
数学 高校生

この話で、それぞれの()がなぜ成り立つかと、なぜそれらが必要かはわかりました。しかし、最後に集合として一致するとありますが、この流れからどうやって集合の話に繋げているのかわかりません。

8 第9章 整数の性質 応用問題 1 正の整数 α, 6 に対して, a をbで割った商をg,余りを とする.つ まりなわれ a=bq+r が成り立つとする。このとき,以下が成り立つことを示せ. (1)aとbの公約数をd とすると,dはとの公約数でもある. (2)の公約数を d' とすると,d' はaとbの公約数でもある。 (3)aとbの最大公約数とbとの最大公約数は一致する. 精講 ユークリッドの互除法の 「核」 となるp336 の (*) を証明してみま しょう.考え方としては,「αと6の公約数」と「6との公約数」 が(集合として)一致することを示そうというものです。それがいえれば当然, それぞれの最大公約数も等しいといえます。 解答 (1)a ともの公約数がdであるから, a=dA, b=dB (A, B は整数) とおける.このとき r=a-bg=dA-dBq=d(A-Bq) dx (整数) なので,rdの倍数である。(bもdの倍数でもあるので)はもとの公 約数である. (2)6の公約数がd' であるから, b=d'B',r=d'R (B', R は整数) I-ef とおける.このとき a=bg+r=d'B'q+d'R=d' (B'q+R) d'x (整数) berony なので、 αはd' の倍数である。 (もd の倍数でもあるので,) d' はαとも の公約数である. 3) (1),(2)より「α と6の公約数」 は 「brの公約数」 と(集合として) 致する. したがって, それぞれの最大公約数も等しくなるので、題意は示せ た。

解決済み 回答数: 1