学年

教科

質問の種類

数学 大学生・専門学校生・社会人

極方程式についてです。 点Pが右側にあるときにrがマイナスになっています。これは2枚目の写真のような考え方をしているのかと思いますが、そのときの図と赤枠の図が一致していないように思い、納得できません。 どなたかご説明お願いします🤲

148 基本 例題 84 2次曲線の極方程式 を l とする。点Pからlに下ろした垂線をPH とするとき,e= な点Pの軌跡の極方程式を求めよ。 ただし, 極を0とする。 OP a,eを正の定数,点A の極座標を (α, 0) とし, Aを通り始線 OX に垂直な直線 であるよう PH 基本 81,83 指針▷点Pの極座標を (10) とする。 点Pが直線lの右側にある場合と左側にある場合に分け て図をかき, 長さ PH を 1, 0, αで表す。 そして, OP=ePH を利用してr= 0 の式)を 導くが,<0を考慮すると各場合の結果の式をまとめられる。 vl P(r,0) H A(a, 0) 解答 ℓ 点Pの極座標を (r, e) とする。 点Pが直線lの左側にあるとき PH=a-rcose (*) 点Pが直線lの右側にあるとき P(r, 0) L H OP=ePH から PH=rcos0-a よって r(1±ecos0)=±ea (複号同順) 1±ecos0≠0 であるから r=±e(a-rcos 0 ) A(a, 0) X ea r= ①または tea≠ 0 から r (1±ecos0)≠0 π 1+ecos 0 ea -r= 1-ecos 0 注意14/02/23のとき、 図は次のようになるが,(*) は成り立つ。 ea e ②から -r= ②' 1+ecos (+) P(r, 0) H 点(r, 0) と点(-r, 0+π) は同じ点を表すから, ①と②は 同値である。 よって, 点Pの軌跡の極方程式は r= ea 1+ecos 0 -a- X -rcose 検討 2次曲線と離心率 1. 上の例題の点Pの軌跡は, p.122 基本事項から、焦点 0, 準線ℓ,離心率eの2次曲線を表し, 0 <e<1のとき楕円, e=1のとき放物線, 1 <eのとき双曲線 である。このように, 曲線の種類に関係なく1つの方程式で表されることが利点である。 2.例題で,点A の極座標を (a, π) [準線 l が焦点の左側] とすると,上と同様にして、点P

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

大学 幾何学 専門の方からすると基本問題と伺ったのですが、私が文系大学生ということもあり、何も解答を出せません。 解答を出していただけますと幸いです。 3題のうち1題だけでもとても嬉しいです。 よろしくお願いいたします。

1. S2 = {(x,y,z) ∈ R3 | x2 + 42 + 22 = 1} を単位球面とし, R3 のry平面を自然に R2 と同一 視する: {(x, y,0) | (x, y) = R²} ↔ R², (x, y,0) ↔ (x, y). “北極” (0,0,1) 以外の各点 p∈ S2 に対し, p と (0,0,1) を結ぶ直線と xy平面との交点を n(p) とすることで 写像 ゆN: S2\{(0,0,1)} → R2 が定まる. これを北極からの立体射影とよぶ.同様に,p∈ S2\{(0,0,-1)} と “南極” (0,0,-1) を結ぶ直線を考えることで, 南極からの立体射影 $s: S2 \{(0,0,-1)} → R? ができる.これらにより与えられる球面の二つの“地図”(局所座標)の間の変換 son²を 考えよう.この座標変換の定義域 (すなわち ♀N の行き先の R2 の中の適当な開集合) 上の 座標軸に平行な直線たち Lk={(x,k)|n∈R}, L'k={(k,y)|y∈R}(k= -2,-1,0,1,2) (下の図を参照) を pson でうつしてできる曲線の絵を描け. L2 L1 Lo L_1 L-2 I'_2I'_L' LL'2 son の式を計算して求めても、 作図によって求めても良い. 答えだけではなく, 理由も (読み手が理解できるように) 説明すること.

未解決 回答数: 1
1/11