数学
高校生
(1)でARがなぜ2AB+3AC/5になるかわかりません🙇♂️
第4問 (配点2?上)
1 辺の長さ1 の正四面体ABCD と 点p
CD と点P があり、 ES 」
満たしている。 AP十2BE二3CE 4DEーニ60 を
ュセアコRB+LイJAで+| 5
M eo まき贅できゃ・ 当らte
R はQD 上にあり.
だ
BQ:QCニ[タ]:[を]. QR:RD=ビコ
とな
る。
ピラ】
(⑳ 四面体ABCD の体積をしとおぉくと、四面体PACD の体積W は・
(3) 直線BP と平面ACD の交点をS とおくと。 AS=
あり, 。
居 の大2( -の
コリビピコ >なる。 人
BS= ZN 0
時栓に
⑪ スピ二2BETscET4pB-j より
AP†2AB- 8) (AE_ AOT4(AE- AD) =6
10AP=2ABTsAGT4A5
昌和 て AEニ 2
24朋上3
9 | AT4Ag|
9 _? =
と変形できるから,
AG= ん ARニ 人 の 9 5
とおくと、点Q は線分BC を3 : 2 に内分する点、点R は線分QD を4:5 に
内分する点、点P は線分AR を9 : 1に内分する点である。
ゆめえに BOQ:QC=3:2 QR :RD=4:5 AP:PR=9:1
ーー
1 を引く
WWWtRACD )であ
(② 四面体PACD の体積 は、V
内本体RACD = 8 (We本人QA 5
Me p=き 8 CKSD ら
で
= あさ + 4
(G) 京S は、 直線BP 上にあるから、BSニkB とおける。
よって
AS AB= A(AEー入8)
ゆえに
AS=(1一めAB-AE
ニーがAB 2ABt3A4AD)
大 4 5上-3 AAで上2 AD
ーー AB 年kAでするkAD
点S は平硬ACD 上にあるから
代財 5
ュー#ぁ=0ょり =
したがって A8=きAC+ょAD
ことで B5=2AS- AB= -AB+さAC+ょAD
=IA+ Cu 1
3 . 1 91陸生
=! 放す を| 20582
|>0 ょり 際= ps=
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8926
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6079
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6074
51
詳説【数学A】第2章 確率
5839
24