lim[x→∞]log(e^x - 1)/x
= lim[x→∞](1/x) log(e^x - 1)
= lim[x→∞](1/x) log{e^x (1 - 1/e^x)}
= lim[x→∞](1/x) {log(e^x) log(1 - 1/e^x)}
= lim[x→∞](1/x) {x log(1 - 1/e^x)}
= lim[x→∞]1 (1/x) log(1 - 1/e^x)
= 1-0×0
= 1
いえいえ
lim[x→∞]log(e^x - 1)/x
= lim[x→∞](1/x) log(e^x - 1)
= lim[x→∞](1/x) log{e^x (1 - 1/e^x)}
= lim[x→∞](1/x) {log(e^x) log(1 - 1/e^x)}
= lim[x→∞](1/x) {x log(1 - 1/e^x)}
= lim[x→∞]1 (1/x) log(1 - 1/e^x)
= 1-0×0
= 1
いえいえ
分母分子ともに無限大に発散するので,ロピタルの定理より
lim[x→∞]{log(1 e^x)}/x
=lim[x→∞]e^x/(1 e^x)
=lim[x→∞]1/(1/e^x 1)
=1
この質問を見ている人は
こちらの質問も見ています😉
丁寧に書いて下さり
ありがとうございます!!