数学
高校生
解決済み

この問題の1番下に引いた青線の部分がわからないので教えてほしいです。

例題 41 2 つの2次方程式の解の判別 は定数とする。 次の2つの2次方程式 x2-kx+k2-3k=0 ①, (k+8)x2-6x+k=0 について,次の条件を満たすんの値の範囲をそれぞれ求めよ。( (1) ①,② のうち、少なくとも一方が虚数解をもつ。 (2) ①,② のうち,一方だけが虚数解をもつ。 00000 ② 指針 )については, 2次方程式であるから、xの係数について,k+8≠0 に注意。 ①,②の判別式をそれぞれ D, D2 とすると,求める条件は (1) D, <0 または D2<0 - → 解を合わせた範囲 (和集合) 基本 40 (2)(100) または (D≧0 かつD2 <0) であるが,数学Ⅰでも学習したよ うに, Di<0, D2<0の一方だけが成り立つ範囲を求めた方が早い。 ...... チャート式基礎からの数学Ⅰ+Ap.200 参照。 CHART 連立不等式 解のまとめは数直線 ②の2次の係数は0でないから k+8±0 すなわちんキー8 普通, 2次方程式 S 解答 このとき、 ①,②の判別式をそれぞれD1, D2 とすると D=(-k)2-4(k2-3k)=-3k+12k=-3k(k-4) =(-3)²-(k+8) k=-k²-8k+9 8+ (S-1) D₂ 4 =-(k+9)(k-1) (1) 求める条件は,kキー8のもとで D1 <0 または D2<0 ax2+bx+c=0 とい うときは,特に断りが ない限り, 2次の係数 aは0でないと考え る。 D< 0 から kk-4)>0 ゆえにk <0,4<k kキー8であるから Yet <-8, -8<k < 0,4<h ...... ③ > 10% 0.00 D< 0 から (k+9)(k-1)>0 ③ よって k<-9, 1<h ...... -9-8 プ (2) ①②の一方だけが虚数解をもつための条件 は, Di < 0, D2<0 の一方だけが成り立つことで ある。 の場合、 求めるkの値の範囲は, ③と④の範囲を合わ #k<-8, −8<k<0, 1<k 01 4 k >> ③ ③ -9-8 ゆえに、③④の一方だけが成り立つkの範囲 01 4 を求めて-9≦k<-8,-8<k<0,1<k≦4

回答

✨ ベストアンサー ✨

この問題は範囲が重なっているところを避ければ良くて、-9より小さくなると範囲が重なってしまう。逆に言うと-9まではセーフ。よって-9まで含めます。-9までなら大丈夫な理由は(1)で①が虚数解を持つ範囲でk<-9となっているからです。

この回答にコメントする
疑問は解決しましたか?