数学
高校生
解決済み

囲ってあるところの計算方法がわかりません。どなたかお願いします。

題 222 3 次関数のグラフとその接線の共有点 曲線 C:y=x-4x+2x 上の点P (1/3 2727) における接線と曲線Cの 共有点のうち、点P以外の点Qのx座標を求めよ。 « ReAction x=aにおける接線の傾きは,f(a) とせよ 例題 217 「段階的に考える I. 接線の方程式を求める。 II. 接線と曲線 C の方程式を連立して共有点のx座標を求める。 考のプロセス LO 5 章 14 導関数の応用 連立してyを消去した方程式は,x = を重解にもつから (x-1)(x-1)=0 (x-α) = 0 と因数分解できる。 傾き y′ = 3x2-8x +2 より, x= 1/32 のとき = 1/3 よって、 接線の方程式は まず、接線の方程式を 求める。 7 y- 27 1/2(x-1/13) すなわち 1 10 y = x+ 3 27 接線と曲線 C の共有点のx座標は 1 10 x-4x2+2x=-x+ YA 27 P 7 10 x3-4x2+ 0/1 x x- = 0 3 27 x= 13 10 を重解にもつ 2 2 x 1/31) (x-1) 10 = 0 から (12/3)を数 を因数に もつ。 左辺を 10 よって, 点Qのx座標は x_ 3 1/23)(x-1)とおい (別解〕 て、定数項を比較して 点Qのx座標をα とおき, 曲線Cの点Pにおける接線 の方程式を y=mx+n とおく。 α = 10 3 と考えてもよい 接線と曲線 C の方程式を連立すると 3次方程式の解と係数の 関係を用いる方法。 m, n の値を具体的に求めずに αを求めることができる。 x3-4x2+2x=mx+n x3-4x2+(2-m)x-n=0 1 54 例題 この3次方程式の解がx= (重解), αであるから, 3 1 1 解と係数の関係より + +α=4 3 3 10 10 a = より,点Qの x 座標は 3 3次方程式 ax+bx+cx+d=0 の解がα, β, yのとき a+β+y=- b a
微分

回答

疑問は解決しましたか?