数学
高校生
解決済み

解答の表と矢印の意味が分かりません!解説お願いします!

[9]]] 導き、 x= 1, 5 4次式x 有理 基礎問 を実数とする. 3つの2次方程式 「間」とは、入試に できない)問題を言い ではこの x²-2ax+1=0 .......① 2-2ax+2a=0 ....... ② CONN 効率よくまとめてあり 4.エー8ax+8a-30 ...... ③ ■入試に出題される 方程式 範囲を 取り上げ、教科書 行います。 特に、 実にクリアできる なαの値の範囲を求めよ. 岸をもつ 2次方 ■「基礎間」→「 また、 で1つのテー と係 精 ■1つのテーマは 2 2 4 Dz. 2=a²-2a=a(a-2) 4 ことになります。しかも, その値は正, 0, あるので、道立不等式をそのまま解くとするとかなりメンドウです。ご なときには表を使うとわかりやすくなります。 解答 ① ② ③の判別式をそれぞれ Di, D2, D3 とすると |D=α-1=(a+1)(a-1) 2次方程式の解が実数が数かを判別するとこには判別式を すが、この間のように方程式がぼつあると不等式を3つ 負の3種類の可能 L=4(4α²-8a+3)=4(2a-3)(2a-1) D=0 a=±1 D2=0a=0, 2 3 1 D3=0a= 2'2 よって, Di, Dz, D3の符号は下表のようになる. 1 a -1 ... 0 1 .... 2 + + 0 + D₁ D2 + D3 + 20 + + + + 0 - + + 0 - - 1 32 + + 0 2 2 + + + 0 + - + + + ここで、題意をみたすためには, Di, D, Ds のうち、 1つが負で、残り2つが止または0であればよいので -1<a ≤0, Sa<2 参考 注 この表のかき方は微分法で増減表をかくときと似ています。 「実数解をもつ」という表現には気をつけなければなりません。 「異なる2つの実数解」ならば,D>0ですが、この場合は重解も含ん でいることになるので, D≧0 でなければなりません。 (D120 問題文の意味を忠実に再現すれば次のようになります。 D₁≥0 (D₁<0 D220 または D<0 D<0 または D20 D220 D20 第2章 このように,「かつ」 と 「または」 が混在すると,まちがう可能性が かなり高くなります。 表にまとめるという解答の手段は非常に有効といえます。 ぜひ、使 えるようになってください。 ポイント 演習問題 18 「かつ」 と 「または」 が混在している連立不等式を数直 線を利用して解くと繁雑になるので, 表を利用した方 がわかりやすい αを実数とする. 3つの2次方程式 解をも tc x2-2ax+1=0 2-4x+α²=0 ....... ① ......② 2-(a+1)x+α²=0 ...... ③ のうち、1つだけが実数解をもち、他の2つは虚数解をもつような
数ⅱ、二次関数

回答

✨ ベストアンサー ✨

判別式が
正(実数解を2つ持つ)⇒+
0(重解を持つ)⇒0
負(虚数解を持つ)⇒-
と表現している

⇄は、必要十分条件が成り立つっていうこと
例えば D₁=0 ⇄ a=±1だったら
D₁=0 ならばa=±1、 a=±1ならば D₁=0
が両方成り立つ、という意味

分からなかったらまた聞いてー!

偏差値90

すみません返信、遅くなりました!とてもわかり易いです(^o^)

偏差値90

あ、あと、矢印の部分なのですが、類題を見たらその部分が書いていなかったかのですが、書かなくても減点される訳では無いということでしょうか?良ければ解説お願いします。

れお

返信ありがとう!少なくとも模試とか実際の試験では減点されないよ〜
なんなら、表もそんなに丁寧に書かなくていいかもね
↓こういう書き方でも答えがあってれば基本マルです

偏差値90

なるほど、とても参考になります!ありがとうございます😀

れお

いえいえー!

この回答にコメントする

回答

疑問は解決しましたか?