数学
高校生
この問題の私の解答があってるかどこが間違ってるのか教えて欲しいです><
模範解答とちょっとやり方違ったので🖐🏻
(2)≧4をみたすすべての自然数nについて, 不等式(
n!>2n
が成り立つことを,数学的帰納法を用いて証明せよ。
(2)(I)n=牛のとも
1左の1=41=24
(右)=16
よって成り立
(n=kのとき盛り立つと仮定すると
(k=4.5.)
k1>2k
n=k+laとき
(k+1)-2K+1 >
>(k+1):-2-k!
= (k+1-2)-k!
=(k-1).ki
K≧4より(k-1)K!>o
よって(k+1)!>2k1
よってh=k+1のときも成り立つ
(XI)より数学的帰納法より
成り立つ
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8926
116
数学ⅠA公式集
5649
19
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4549
11
【セ対】三角比 基礎〜センター約8割レベル
982
3