数学
高校生
赤の波戦の部分が理解できません💦
教えて頂きたいです🙇🏻♀️
直線 AD 上に動点Qをとり、二つの線分 CQ, PQの長さの和をL =CQ+PQ
とする。
太郎 Lの最小値を求めるにはどうすればよいのかな。
花子: 直線 AD に関して Cと対称な点を考えればよいね。
AB'> BC2+ CA2が成り立つから ∠ACBは鈍角であり, 直線 AD に関して 3
点 B, C, P がすべて同じ側にあることに注意して考えると, Lの最小値は
テ
トである。 49
Tal
S
A
B
Caja
D
081=
5
A
45°
5√2-
D
E
線分 CE と直線AD の交点をMと
直線 AD に関してCと対称な点をEとすると
CQ=EQ.
OABS 20
QM のとき,
よって,
L=CQ+PQ
=EQQP
M
fontin
EP
25
CM=EM,
∠CMQ= ∠EMQ=90°
MQは共通
より, △CQM=△EQMであるから
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6085
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6079
51
詳説【数学A】第2章 確率
5840
24