数学
高校生

209.
これってどこが間違ってますか??

である。 こなる。 無値をもつよ 囲を求めて 例題 207 =2は、関数 の和が2であ 重要 例題 209 3 次関数の極大値と極小値の差 | 関数f(x)=x-6x+3ax-4の極大値と極小値の差が4となるとき, 定数αの 値を求めよ。 |指針>前ページの例題と同じ方針で進める。 x=α で極大値, x=βで極小値をとるとすると 極大値と極小値の差が 4 ⇔f(α)-f(B)=4 f(a), f(3) を実際に求めるのは面倒なので, f(a) -f (B) を α-B, a+β,αB で表し, 更に (α-B)'=(a+B)-4cβ を利用することで,α+ß,αβ のみで表すことができる。 TERO (A0+xa-x Raythiel 答 f'(x)=3x²-12x+3a 数 のときに大竹をよ f(x) は極大値と極小値をとるから, 2次方程式f'(x)=0 すな わち3x²-12x+3a = 0 ① は異なる2つの実数解 α, β (α<β) をもつ。 よって, ① の判別式をDとすると D>0 D KETE 2=( =(-6)-3-(3a)=9(4-α)であるから 4-a>0 0090 =(a−ß){(a²+aß+ß²)−6(a+ß)+3a} 136 [38\ a. =(a-β){(a+β)2-aß-6(a+β)+3a} α+B=4, aβ=a ① で, 解と係数の関係より よって (a-β)²=(a+β)²-4aß=4²-4・a=4(4-α) x a B したがって a<4 f'(x) + 0 - 0 + f(x) の x の係数が正であるから, f(x) は x=αで極大,x=B f(x) 極大 極小 > で極小となる。 CƏSÁŽNE <3JR$ 0=> [s] f(a)-f(B)=(α3-β3)-6(α²-B2)+3a(α-β)3次関数が極値をもつとき 極大値> 極小値 α<Bより,α-β<0であるから ゆえに a-B=-2√4-a f(a)-f(B)=-2√4-a (4-a-6・4+3a) X=1 (30))=-2√/4-a{-2(4-a)} HOCSON = 4( √4-a)³ f(a)−f(B)=4であるから すなわち (√4-a)³=1 ゆえに, 4-α=1から 4(√4-a)³=4 よって a=3 √4-a=1 これは②を満たす。 今回は差を考えるので, α<βと定める。 基本208 ② から 4-a> よって √4-a>0 ◄4-a=(√√4-a)² 検討 f(α) -f (B) の計算は,第7章で学習する積分法を利用すると, らくである。 f(a)-f(3) = f(x)dx=3(x-a)(x-3)dx=3[ - = (a-B)"} これにα-β=2√4-α を代入して, f(a) -f (B)=4(√4-α) となる。 . <√4-α=1 の両辺を2乗し て解く。 -p.352 基本例題 230 (1) の公式を利用。 =で極大値, x=βで極小値をとるとき, 3. E 3
例題209 Fax) = x² - 6x² + Jax- & f fax) = 3x²ª² - 12x + 3a = 2 ( 2² - 4x + a) fil = 0 + x ² X = 2 1 14-a =0xx=2± 2+14 a 72-14-a² & 4. F (2+√4-a ) - ( 2+√4- a) = 4 2√4-α = 4 両辺を乗すると 4(4- a) = 16 16 - 40 = 1.6 a = 0

回答

Hiさんの求め方だと極大値をとるxの値と極小値をとるxの値の差が4となるときのaの値を求めてしまっています。

この回答にコメントする
疑問は解決しましたか?