数学
高校生
解決済み

これってかっこの中が二次関数や三次関数の時も使えますか? 2枚目の写真のような問題があって答えが合わないんですけど子が違いますか?

-³ dx 2-2t +1)dt dt +2) dx 編 p.405 + C 200 14 例題218 不定積分 次の不定積分を求めよ。 f(x+3) ³dx Focus うに (p.361), 微分法で学んだよう {(x+3)=3(x+3)²X (x+3)=3(x+3) ².1 {(3x+2) =3(3x+2)²X (3x+2) =3(3x+2)².3 {(-x+2) ³)=5(x+2) ¹ x (x + 2)² =5(-x+2)^(-1) 1 a(n+1) であり,一般に, f(x)=ax+b (xの1次式)について, inimum mmmm {(ax+b)"+¹}=(n+1)(ax+b)*+¹-¹×(ax+b)'(x) Sax + (2) S(3x+2) ³dx したがって, となる. Cを積分定数とする. (1) S(Dx+3) ³ dx = 1 x+b) "dx=- (2) (3x + 2)² dx=- (3) x+2) ¹dx=- 1 1 (2+1) =(x+3) ³+C =(n+1) (ax+b)" ×a = a (n+1)(ax+b)* £y, ( @x + b )² +¹} = (a )+1 = 9 S(ax+b)^dx= 次の不定積分を求めよ. (1) Six-2)³dx (ax+b)" ③3 (2+1) (3x+2)³+C -(x+3) ²+¹+C 2+1, (2) -(3x + 2)²+¹+C 1 -1 (4+1) −(− x+2)³+C (-x+ =(x-2)³+C 1 a(n+1) (3) 1 (ax+b)+¹+C (CH) a(n+1) +0 -0. 1 不定積分と定積 S-x+ S(3x-2) -2) ¹dx **** x+2)¹dx [{f(x)}"] =n{f(x)}"-¹.f'(x) 3 答えは (1/23(x+3)+Cのままでよい。 展開すると, 1 (x³+9x²+27x+27)+C =x²+3x²+9x+9+C となり, 9+C=C' とおけば, - (-x+2)+1 +C まず展開してから積分したも のと同じ結果となる. (2) (3)も同様である. (-x+2)5={-(x-2)}5 =-(x-2) n+1 -(ax+b)+¹+C (C:) 9 (3) S(1-x) ³dx ers * 22 =PC₂ = pt 0 (a *73²(6 (a+b = 3 -A+ fa+ o mn
て ²+bx+c) 9 x Jo (²) -72 Tofaz [₁{ax ²-ax+ + α/dx = -=[Fax²=3 +7α: fa a > 3 · [ = (a x²= ax + + α ) ²³ ] ! [ = (a/-α/² + (²a) ³ = 1 (+a) 3 ( 1 I 5. 36.-60²= 1 3 3 3/ M²³²= 216 x 3 =648 = 6²³x3 =(3.2)3-3 33.3.23 = a = √ 1 = 3-23 =633

回答

疑問は解決しましたか?