数学
高校生

数IIです
お願いします🙏

72 610 00000 基本例題 244- 面積の最大 最小 (1) 作用と飲作はソード"で囲まれる図形の面積をSとする 小値を求めよ。 指針点 (1,2) を通る直線の方程式は, その傾きをm とすると, y=m(x-1)+2と表される まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BSを表す が利用できる。 このとき,公式f'(x-a)(x-B)dx=1/(a-α) 6 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ....... ① と表される。 直線 ① と放物線y=x2の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m−2)²+4 常に D > 0 であるから, 直線①と放物線y=x2は常に異なる 2点で交わる。 その2つの交点のx座標をα, β (a <β) とすると s=Sm {m(x-1)+2-x2}dx=- =-f(xーmx+m-2)dx =-f(x-a)(x-B)dx=1/(B-α) _m+ √D _m-√D = √D=√ (m−2)²+4 2 また B-α=- したがって, 正の数β-α は, m=2のとき最小で,このとき (B-u)も最小であり,Sの最小値は 1/12 (14)=1/3 x2-mx+m-2=0の2つの解をα, β とすると よって (B-α)²=(a+B)2-4aß=m²-4(m-2)=(m−2)²+4 a YA y=x² (1,2), x= IS 点(1,2)を通り軸に垂 な直線と放物線y=x"で まれる図形はない。よって 軸に垂直な直線は考えなく てよい。 y=ms-1 <α, βは2次方程式 検討 β-αに解と係数の関係を利用 S=12 (B-α) において, (B-α)の計算は 解と係数の関係 を使ってもよい。 =1/(B- a+β=m, aβ=m-2 B x2-mx+m-2=0の解で »*1²=__=_s=—=— (B-a)² = — _ ((B-a)²³)³ = = = {(m − 2)² + 4)}²} ≥ 1/1 •4 ² = 1 {3} S= m± √√m²-4m+8 2 m²4m+8=D 練習 ③244 きが 2x+mであるという。 放物線y=f(x) と放物線y=-x²+4x+5で囲まれる mは定数とする。 放物線y=f(x) は原点を通り, 点 (x, f(x)) における接線の 図形の面積をSとする。 Sの最小値を求めよ。 p.382 EX19
点(1,2)を通り、必軸に垂直な直線・放物線で 国がれる図形にないため、 直線・傾きを…. (acto)をすると、 Ce これで始めるのにありですか?

回答

まだ回答がありません。

疑問は解決しましたか?