数学
高校生

中段よりちょい上くらいのところです。
なぜいきなりax^2+bx+cを(x+1)^2で割っているのですか?p(x)の整式ってわかってませんよね

FREM 例題 40 剰余の定理の応用 →例題39 整式P(x) をx-2で割ると 18余り, (x+1)^ で割ると -x+2余る。 このとき,P(x) を (x-2)(x+1)^ で割ったときの余りを求めよ。 Action 整式を整式で割った余りは、剰余の関係式 A = BQ+ R を利用せよ 解法の手順・・・ ・1商をQ(x), 余りを ax²+bx+c とおき, 剰余の関係式をたてる。 2剰余の定理を用いて a, b,c の式をつくる。 3 | ax²+bx+c を (x+1)2で割ったときの余りを求め ...... 解答 P(x) を (x-2)(x+1)^ で割ったときの商をQ(x), 余りを ax2+bx+c とおくと P(x)=(x-2)(x+1)^Q(x)+ax+bx+c_ P(x) をx-2で割ると18余るから, P(2) 18 より 4a+26+c = 18 ... 2 次に, ax²+bx+c を (x+1) で割ると、 商が α, 余りが (b-2a)x+(c-α) となることから ax2+bx+c=a(x+1)+(b-2a)x+(c-a) (...3 (8+x) ③① に代入すると P(x) = (x-2)(x+1)^Q(x)+α (x+1)+(b-2ax+(c-a) =(x+1)^{(x-2)Q(x)+α}+(b-2a)x+(c-a) よって, P(x) を (x+1) で割ったときの余りも (b-2a)x+(c-α) これがx+2となることから, 係数を比較して 6-2a=-1... ④, c-a=2... ⑤ ② ④ ⑤ を連立して解くと α = 2,6=3,c=4 a したがって、求める余りは 2.x² +3x+4 らえるこし ・・①ある。 余りは2次以下の整式で a x2 +2x+1) ax²+bx+c ax2+2ax+a (b-2a)x+c-a (6-2a)x+(c-a) = -x+2 -1 2 1
二次方程式 2次方程式 剰余の定理

回答

まだ回答がありません。

疑問は解決しましたか?