数学
高校生
解決済み

(2)の1=-2aの部分は点(1.1)をどこに代入してますか?

CHART ②次関数の決定 (2) 基 本 例題 63 2次関数のグラフが次の3点を通るとき, その2次関数を求めよ。 (1) (-1, -2), (2, 7), (3, 18) (2)(−1,0),(2,0),(1,1) OLUTION 解答 (1) 求める2次関数を y=ax²+bx+cとする。 そのグラフが3点 (12) (27),(3,18) を通るから 2次関数の決定 ( 3点から決定) 一般形 y=ax²+bx+c 分解形 y=a(x-α)(x-β) からスタート ・・・・・ (1) グラフ上の3点が与えられた場合は,一般形からスタート。 y=f(x) とすると,-2=f(-1), 7=f(2), 18=f(3) が成り立つ。 (2) 通る点にx軸との交点(-1,0), (20) が含まれているので,分解形から スタート。→y=a(x+1)(x-2) とおく。 a-b+c=-2 4a+26+c=7 9a+36+c=18 ②① から 3a+36=9 3-15 8a+4b=20 ④, ⑤ を解いて これらを①に代入して したがって、求める2次関数は y=2x²+x-3 (2) グラフはx軸と2点(-1,0), (20) で交わるから求め る2次関数はあり y=a(x+1)(x-2) PRACTICE・・・ 63② 2次関数のグラ ...... (3) すなわち a+b=3 すなわち 2a+b=5 (2) a=2,6=1 c=-3 と表される。そのグラフが点 (1,1)を通るから 1=-2a したがって、求める2次関数は y=-1/(x+1)(x-2) p.84 基本事項 3 これを解くとa=-1 2 11+5 y=-1212x2+1/2x+1でもよい) 0000 4 (⑤5) 放物 基 y=f(x)のグラフが 点(s, t) を通る ⇔t=f(s) ①~③のcの係数はす べて1であるから,cが 消去しやすい。 inf. 連立3元1次方程式の解法 ① 消しやすい1文字を消 去する ② 残りの2文字の連立方 程式を解く ③①で消去した文字の値 を求める

回答

✨ ベストアンサー ✨

2行前のy=2(x+1)(x-2)です

直前「そのグラフが点(1,1)を通るから」ということからもわかります

ちさと

どういうことですか?

ちさと

ベストアンサー間違えて押してしまいました!

すみません、
(1,1)を2行前のy=a(x+1)(x-2)に代入して
1=-2aが得られる、
ということです

「求める2次関数はy=a(x+1)(x-2)と表される。
そのグラフが点(1,1)を通るから1=-2a」
と書いてあるのだから、
(1,1)を入れるべきは直前のy=a(x+1)(x-2)です

ちさと

こちらこそすみません。
解けました!ありがとうございます!

この回答にコメントする
疑問は解決しましたか?