数学
高校生
数学、2次関数です。
【5】【6】それぞれ解答を聞きしたいです。
【5】 次の2次不等式を解きなさい。
但し、ウケ・カ・シッ ・ヌには適切な文章で答えよ。(※手書き入力)
(P98~101 参照)
(3)
x²+4x+4>0
x2+4x+4=0 を解くと
(x +7])² =
x=1
= 0
求める不等式の解は,
x2-10x+25 ≦0
x² + 10x + 250 を解くと
2
(x + =)²
x =>
<= 0
求める不等式の解は、
x2-3x+4>
X=
ウ
x²-3x+4=0 を解くと
±√²-4××4 +√7
2x2
2次不等式の解は
(2)
x2-6x+9≧0
x2-6x+9= 0 を解くと
x
2
0
求める不等式の解は,
x2-16x+64 < 0
x2 - 16x + 64 0 を解くと
2
(x-E) <= 0
求める不等式の解は、
(6) x2+4x+6<0
X=
x2+4x+6=0 を解くと
-5+√5-4××6 -5±5
2×下
2次不等式の解は
X
【6】2次関数y=-x2+2x-3のグラフとx軸との共有点があるか、 2つの方法で考えなさい。
下のア〜エに入る数や言葉, 記号を答えなさい。(※手書き入力) (P97 考えてみよう? の応用)
(1)
(2)
2次方程式x2 + 2x-3=0を解くと,
解の公式より
ア
根号の中が
イ
となるから、解はなし。
したがって, グラフとx軸との共有点はなし。
x
2次関数 y=-x²+2x-3 のグラフの頂点は
グラフは、下の①~④のうちの
V.
のようになるので、x軸との共有点はなし。
V.
べ
が
A ñ
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5840
24
詳説【数学A】第3章 平面図形
3608
16
詳説【数学B】漸化式と数学的帰納法
3186
13