✨ ベストアンサー ✨
(1)重心が中線AMを2:1に内分することから
AG=(2/3)AM=2
(2)内心が角の二等分線の交点であることか
AI:IM=AB:BM=5:4 で
AI=(5/9)=5/3
(3)外心は正弦定理を利用します
直角三角形AMBでAM=3,AB=5から
sinB=3/5
正弦定理より、2R=AC/sinBで
2R=5/(3/5)=25/3 から
R=AC=25/6
写真の問題の、求め方の記述の書き方が分からないので、教えて欲しいです!お願いします🙏
✨ ベストアンサー ✨
(1)重心が中線AMを2:1に内分することから
AG=(2/3)AM=2
(2)内心が角の二等分線の交点であることか
AI:IM=AB:BM=5:4 で
AI=(5/9)=5/3
(3)外心は正弦定理を利用します
直角三角形AMBでAM=3,AB=5から
sinB=3/5
正弦定理より、2R=AC/sinBで
2R=5/(3/5)=25/3 から
R=AC=25/6
この質問を見ている人は
こちらの質問も見ています😉
天才です大好きです
こんな夜中にありがとうございます!!