数学
高校生

矢印の1がどこからきているかわかりますか?

386 第7章確 (3) *** N216 余事象の確率(2)湿(12) ** 1から10までの数字を書いた10枚のカードから同時に3枚を取り出す 1 カードの数字の積が3の倍数になる確率を求めよ。 カードの数字の積が4の倍数になる確率を求めよを地 カードの数字の積が12の倍数になる確率を求めよ. (3) 考え方 (1) 解答 3枚同時! なので 13. 際, 余事象の確率の考えを使った方が場合分けが楽である. (2) も同様. ⑥, ⑨ のカードから少なくとも1枚を含んで3枚を選ぶ確率を求める、その (3) (1)と(2) があわせて起こる場合について考える。 (1) 「3の倍数のカードを少なくとも1枚を含んで3枚を 「選ぶ」という事象をAとすると, A の余事象Aは「3 の倍数以外のカード7枚から3枚を選ぶ」ことで, 7 P(A) = 7C3 — 7·6·5 - 10.9.8 10 C3 3・2・1 3・2・1 24 GEOR この1は CO(PX よって、求める確率は, 余事象の確率 24) 001 10₂X60 (2) 「3枚のカードの数字の積が4の倍数になる」という事象をBとすると、B P(A)=1-P(A)=1-- CARLOHICORDI 7 17 8 3 24 の余事象B は 「奇数のカード5枚から3枚を選ぶ」 または 「奇数のカード5 枚から2枚を選び,かつ, 2,⑥6, 10から1枚を選ぶ」ことで、 5.4 + -×3÷ 3.2.1 2.1 元樹 P= P(B) = 5C3+5C2×3C15・4・3.10・9・8 10 C3 10 C3 3.2.1 $993007 1 1_1 + 12 4 3 E. (POES 1-DX よって、求める確率は、P(B)=1-P(B)=1-13-22 (8)+((1+3C2×2Cı=7(通り) つまり, P(A∩B)= (3) 「3枚のカードの数字の積が12の倍数になる」 とい う事象をCとすると, CANB より どこから? P(C)=P(A∩B)=P(A)+P(B)-P (AUB) ここで、 P(AUB)=1-P (AUB) =1-P(A∩B) よって, P(C)=P(A)+P(B)-(1-P(A∩B)) ..…① 事象ANBは「3の倍数でなく,かつ, 4の倍数でない」、つまり, 1,5 77を選ぶ」または「1, 5,77から2枚を選び, 2, 10 から1枚を選ぶ」こ とであるから, K 77 120 10C3 OR P(A)=1/72P(B)=1/3P(A∩B)= 7 120 24 INZE 30 10.9.8 3.2.1 ANB を代入してられてい P(C)=27+3-(1-2)-13 OCORR A B pogo: 319 Last

回答

疑問は解決しましたか?