数学
高校生

絶対値が1より小さい時の式の作り方

二次関数が2つの絶対値1以下の解を持つ時のaの条件という問題なのですが、解答の8行目辺り、絶対値がいずれも1より小さいから〜の式の出し方がいまいち納得できません。
正しいというのはわかるのですが、この4式がパッと出てこないです。なにかうまく納得できる考え方はありますでしょうか?

第2章 <考え方> 「絶対値が1より小さい」 ということは, 「-1より大きく, である. x2+ax+a=0の解をα, βとする。 解と係数の関係より、 a+β=-a, af=a x2+ax+a=0 の判別式をDとすると, α, βは異なる2つ の実数解だから, D>0 である. D=a²-4a= a(a-4) a(a-4)>0 したがって, a < 0,4<a ...... ① α, βの絶対値がいずれも1より小さいから (a-1)+(B-1)<0, (a-1)(B-1)>0, (a+1)+(B+1)>0, (a+1)(B+1) >0 (a-1)+(β−1)=(a+β)-2=-a-2<0 ......2 a>-2 (a-1)(B-1)=aß-(a+B)+1=a+a+1=2a+1>0 より, a>- 1/2.....③ (+1)+(B+1)=(a+β)+2=-a+2>0 ...4 (+1)(β+1)=αβ+(α+β)+1=a-a+1=1 より, (+1) (+1) > 0 はつねに成り立つ、 よって, ①,②,3,④より -1/21<a<0 別解 より, a <2 f(x)=x2+ax+a= +a=(x + a)²_a² + a ² <. y=f(x)のグラフは,下に凸の放物線で、軸が直線 a X== 第121,頂点が点(-1/21.0 +α)である。 f(x) = 0 が異なる2つの実数 解をもち、その絶対値がいずれも 1より小さいとき, y=f(x) の グラフは右の図のようになり、 (i) ( 頂点のy座標) < 0 (Ⅱ) 軸が直線 x=-1 と 直線x=1の間 (iii) f(-1)>0, ƒ(1)>0 となる. a² 4 +α <0より、 AUX x=-1 a(a-4)>0 x=1 (i を

回答

まだ回答がありません。

疑問は解決しましたか?