数学
高校生

こちらの問題についてです。(6)で答えは③なのですが、なぜそのようになるのですか??教えていただきたいです!!

10 高速道路には、 渋滞状況が表示されていることがある。 目的地に行く経路が複数ある場合は、 渋滞中を示す表示 を見て経路を決める運転手も少なくない。 太郎さんと花子さんは渋滞中の表示と車の流れについて. 仮定をおいて考えてみることにした。 A地点(入口)からB地点 (出口)に向かって北上す る高速道路には、図1のように分岐点A, C. Eと合流 点B. D がある。 ①. ②. ③は主要道路であり, ④. ⑤. ⑥. ⑦は迂回道路である。 ただし、 矢印は車の進行 方向を表し、 図1の経路以外にA地点からB地点に向か う経路はないとする。 また。 各分岐点 A. C. Eには、 それぞれ①と④.②⑦.⑤と⑥の渋滞状況が表示 される。 太郎さんと花子さんは、まず渋滞中の表示がないときに, A, C.Eの各分岐点におい て運転手がどのような選択をしているか調査した。その結果が表1である。 表1 調査日 地点 5月10日 A 1183 5月11日 C 1008 5月12日 E 496 を選択する確率を求めよ。 これに対して太郎さんは、 運転手の選択について、次のような仮定をおいて確率を使っ て考えることにした。 選択した道路 台数 B 1092 91 882 126 248 248 一太郎さんの仮定 表1の選択の割合を確率とみなす。 (i) 分岐点において、二つの道路のいずれにも渋滞中の表示がない場合、 またはい ずれにも渋滞中の表示がある場合、運転手が道路を選択する確率は(1)でみなした 確率とする。 において、 片方の道路にのみ渋滞中の表示がある場合、 運転手が渋滞中 ② の表示のある道路を選択する確率は(1)でみなした確率の4倍とする。 を通過する確率を求めよ。 ⑤ 6 ここで。 (日)の選択の割合を確率とみなすとは、例えばA地点の分岐において④の道路 を選択した割合 - 113 ④ の道路を選択する確率とみなすということである。 1183 太郎さんの仮定のもとで、 次の問いに答えよ。 (1) すべての道路に滞中の表示がない場合, A地点の分岐において運転手が①の道路 [アイ] 7 を通過する確率を求めよ。 ウエ (2) すべての道路に渋滞中の表示がない場合, A地点からB地点に向かう車がD地点 セソ キク (③3) すべての道路に滞中の表示がない場合, A地点からB地点に向かう車でD地点 ケ コサ (4) ① の道路にのみ渋滞中の表示がある場合, A地点からB地点に向かう車がD地点 シス を通過した車が、 E地点を通過していた確率を求めよ。 各道路を通過する車の台数が1000台を超えると車の流れが急激に悪くなる。 一方で各 道路の通過台数が1000台を超えない限り。 主要道路である ①. ②. ③をより多くの車 が通過することが社会の効率化に繋がる。したがって、 各道路の通過台数が1000台を 超えない範囲で、 ①. ②. ③をそれぞれ通過する台数の合計が最大になるようにした このことを踏まえて, 花子さんは、 太郎さんの仮定を参考にしながら、次のような仮定 をおいて考えることにした。 ・花子さんの仮定・ ① 分岐点において、二つの道路のいずれにも渋滞中の表示がない場合。 またはいず れにも渋滞中の表示がある場合、 それぞれの道路に進む車の割合は表1の割合とす る。 (i) 分岐点において、 片方の道路にのみ渋滞中の表示がある場合、 渋滞中の表示のあ る道路に進む車の台数の割合は表1の割合の4倍とする。 過去のデータから5月13日にA地点からB地点に向かう車は 1560台と想定している。 そこで、花子さんの仮定のもとでこの台数を想定してシミュレーションを行った。 このとき、 次の問いに答えよ。 (5) すべての道路に渋滞中の表示がない場合。 ①を通過する台数はタチツテ 台とな る。 よって、 ①の通過台数を1000台以下にするには、 ① に渋滞中の表示を出す必要 がある。 ①渋滞中の表示を出した場合、 ①の通過台数はトナニ 台となる。 (6) 各道路の通過台数が1000台を超えない範囲で、 ①. ② ③ をそれぞれ通過する台 数の合計を最大にするには、渋滞中の表示をヌのようにすればよい。 ヌ 当てはまるものを、次の ⑩のうちから一つ選べ。 に (4 M (アイ) 12 (ウエ) 13 (タチツテ) 1440 D. (オカ) 11 (シス) 19 (42) 13 (29) 22 (47) 20 (コサ) (トナニ) 960 (ヌ) ②

回答

まだ回答がありません。

疑問は解決しましたか?