数学
高校生

(1)の解説の5行目以降が全然分からないので教えてほしいです!

214 00000 重要 例題 128 複素数の累乗に関する無限級数 zを複素数とする。 自然数nに対し, 2” の実部と虚部をそれぞれxn とynとして、 2つの数列{x}, {y} を考える。 つまり, z" = xn+iyn (i は虚数単位) を満たして いる。 (1) 複素数zが,正の実数と実数0を用いて z=r(cos0+isine) の形で与え られたとき,数列{x},{y} がともに0に収束するための必要十分条件を求め よ。 1+3iのとき, 無限級数xとyはともに収束し,それぞれの和 10 n=1 (2) z=- はΣxn= n=1 指針 (1) まず, z=r(cos0+isine) の両辺をn乗した式に注目して, xn, yn をそれぞれn, r 0 で表す。 そして, xn2+ym² を計算するとの形になるから,数列{x},{yn} がともに 必要条件 0 に収束するとき, 数列{x^²+y^²} が0に収束するための条件を求める。 無限級数 部分和の収束・発散を調べる (2) 2 k まず,初項z,公比zの等比数列{z}の部分和 ②2 を求める。そして、 k=1 y=1である。 n=1 ②2=2xn+iye が成り立つことから,部分和之x, y が求められる。 J=1\ k=1 k=1 部分和の極限を調べる際は, (1) の結果も利用する。 解答 (1) z=r(coso+isin0) [r>0] のとき z"=r" (cosno+isinn0)=r” cos n0+ir "sinno よって ゆえに limxn=limyn=0のとき 12400 7248 Yk xn=r"cosno, yn=r"sinno x² + y²=(r) ² (cos² no+sin² n0) = (²)″ 330 lim(x₂²+y₂²)=0.00 (2) 2=1+√ i 10 k=1 のとき よって 0≤r² <1 > 0 であるから 0<r<1 (*) 逆に, 0<r<1のとき, -1≦cosn0 ≦1であるから -r≤r" cos no ≤r" 0<r<1であるから limr"=0, lim(-r") = 0 よって limr"cosno=0 780 -1≦sinn0≦1から,同様にして limr"sinn0=0 ◄-r≤r sin ne≤r" ゆえに、0<r<1のとき, 数列{x},{y} はともに0に収束する。 limx=0,limy=0 以上から 求める必要十分条件は 0<r<1 700 基本 118,119 00 _2(1-22-12 (1-(xn+iya)} z(1-z") ド・モアブルの定理。 ◄z"=xn+iyn +=c +5 無限等比数列が 0 に収 束する条件は -1< (公比) <1 (*) ここから, 十分条 件であることの確認。 はさみうちの原理。 初項z,公比zの等比 数列の初項から第n項 POAT までの和。

回答

まだ回答がありません。

疑問は解決しましたか?