数学
高校生

一体どういうことなのか教えて頂けませんか、、🙇🏻‍♀️
このα<2、β<2はどこからきているんですか??

あと写真の下にある考え方の部分でtとなっているのは何を示してるのですか?

例題 41 2次方程式の解の配置と解と係数の関係 2次方程式x2kx-k+2=0が, 次の条件を満たすような定数kの値の範囲を 求めよ。 (3) 2解がともに2より小さい (1) 2解がともに正 (2) 2解が異符号 (1) 判別式を D,2解を α,βとすると,2解がともに正であるためには D≥0, a+B>0, aß>0 であればよい。 D=k² − (−k+2) =k²+k−2 =(k+2)(k-1)≧0より k≦-2, 1≦k 解と係数の関係から (a−2) + (B-2)<0 (a-2)(8-2) >0 ④ より α+β<4 ◆異なる2解”とかかれていないときは, 重解の場合も含む。 a+B=2k>0 k>0 ... ② aβ=-k+2>0 k<2 ...(3) よって, ①, ②, ③ の共通範囲を求めて 1≦k<2 (2) 2解が異符号であるためには αβ=-k+2<0 したがって k>2 ? どこからきた (3) α<2,B<2^だから α-2<0, B-2<0 したがって,次の ①, ④, ⑤ を満たせばよい。 MADZO 0-10 2k<4 ゆえに k<2 ⑤ より αβ-2 (a+β) +4>0 -k+2-2.2k+4>0 ④ xtpso ?= 5 × ² > · J-) (I- & △ ①, ④, ⑤'の共通範囲を求めて 6 k-2,1≦k< -5k>-6 ゆえに k</1/…..⑤ 《2次方程式の実数解の符号》 ax2+bx+c=0(a≠0) の判別式をD,2解をα,βとすると 2解がともに正 ⇒D≥0, a+B>0, aß>0 2解がともに負 ⇔D≧0, a+ B <0, αB>0/ ・2解が異符号 ⇔ αB <0 ・・・④ート 12V± 3 -2 20 D≧0 は必要ない。 ◆α, βが2より小さいとい う関係式を使って ③ ④ を表すことが大切。 (負)+ (負)<0 (負)×(負)>0 065 1 62 k 2次方程式の解の正, 負や大、小を決定する問題は、 数Ⅰでは2次関数のグラフを利用した。 この解答のように, 解と係数の関係を使う場合は判別式D と, 解 α, βの和と積を考えるが 大きいときはα-t> 0, β-t>0 α, βがt より → として考える

回答

まだ回答がありません。

疑問は解決しましたか?