数学
高校生

[1]の証明のあとに[1]からなぜ双曲線関数と呼ばれるか分かるだろう、と書いてあるのですがなぜか結局よく分からなかったので教えてほしいです!

264 参考 事項 2 双曲線関数 p.254 の練習 149 (9) では、関数y=ex-e-x extex の3つを 双曲線関数といい, グラフはそれぞれ右下のようになる。 ① sinhx= 34 3 coshx= tanhx= e*-e-* 2 (左辺)= ette* 2 ex-e-* extex y= t2+1 2t るとx=cosht, y = sinht となる。 t2-1 2t の導関数を求めた。 この関数を含めて、次 y=coshx y=ex_ O y=sinhx (水) 双曲線関数の逆関数 y= なお, sinhx をハイパボリック サイン coshx をハイパボリックコサイン, tanhx をハイパボリック・タンジェントとよぶ。 高校数学において,これらの記号を直接使う場面はないが,双曲線関数を背景とした入 試問題はよく出題されるので,その性質を知っておくと便利である。一部を紹介しよう。 [1] cosh'x-sinhx=1 [2] tanhx= [3] (sinhx)'=coshx [4] (coshx)'=sinhx sinhx coshx y=-e cosh²x (>y>1- I>x>I-) それぞれ三角関数に似た関係式であることに注目したい。 例えば, [1] は次のようにし て証明できる([2]~[5] もそれぞれ確認してみよう)。J1 THRO >x>I- #(x)\ (S) [1] の証明 (e*+e^x)? (ex-e-x)^ _ ex+2+e-2-(e^x-2+e^2)=1=(右辺)せ。 4 4 4 _3+3 58=(x)\ 1=3² 3=88) 3255 - $38²55 YA A [1] から,なぜ ①~③ が“双曲線関数”とよばれるかがわ かるだろう。 なお, 三角関数は円関数ともよばれており, 円 COSx, sinx は単位円上の点の座標として定義されている。 一方, coshx, sinh x は, 直角双曲線上の点の座標として定大10 義されている。 また、基本例題 75では,双曲線x²-y2=1の媒介変数表 示x=- AD ASIAN YA 1 _^ ^ ^ = ( ^^ + (x) を導いたが、このtをe とおき換え 八十0)\ 10 [5] (tanhx)'= y=tanhx x (cosht, sinht) 1C7 x ✓x-ye = 1 DESI VOH est p.262 の EXERCISES 119 (2) では,導関数を求める際に, 関数 y=log(x+√x2+1) か ROSES らx= (=sinhy) を導いた。 このことから, y=log(x+√x+1) とy=sinh x は 2 逆関数の関係になっていることがわかる。 USPRES (1) TSI ASD) CABA

回答

まだ回答がありません。

疑問は解決しましたか?