数学
高校生

高校1年生数学二次関数について質問です。
ここの1番と3番がよくわからないです! 解説よろしくお願いしますm(_ _)m

まし は、 させたと extc みが変 。 一太郎さんと花子さんは、 2次関数y=x2+bx-1 に ついて、定数6の値を変化させるとグラフがどのよ うに移動するかを, グラフ表示ソフトを見ながら次 のように話している。 () SOLO 太郎:bの値は頂点のx座標にもy座標にも関係す るって習ったよ。 bの値を変化させると,どの象限にも頂点を移動できそうだね。 花子: でも、実際に変化させてみると, 移動しない象限があるよ。 太郎:あっそうか。 頂点の座標は (ア)になるから,移動できるのは第 象限と第ウ 象限だね。 花子: 6の値を増加させると,頂点のx座標は エ |ね。 (1) ア~ウ ] に当てはまる適切な数または数式を求めよ。 に当てはまる最も適切なものを次の①~③のうちから一つ選べ。 ① 増加する ② 減少する ③ 変わらない (3)の値を変化させると,頂点のy座標はどのように変化するか説明せよ。 «ReAction 2次関数のグラフは,まず頂点の座標を求めてかけ 例題 63 y=x2+bx-1=(x-●)+■C 平方完成 頂点 見方を変える の1次式 → 6 の2次関数とみて、 変化を考える の2次式 62 1 (1) _y = x² + bx − 1 = ( x + 1/2 ) ² = 頂点のx座標 b 2 につ 6 > 0 の 62 よって、頂点の座標は (12-01-1)(ア) いて考えると, b とき, 2' < 0 であるか 2 62 ら頂点は第3象限, 6 < 0 b の値によらず 4 -1<0であるから,頂点が移動で と第4象限( のとき, b 2 >0 である るのは第3象限 から頂点は第4象限にあ る。 b (2) 頂点のx座標は であるから, 6の値を増加させる 2 と,頂点のx座標は減少する (②)。 62 Y= == -1 とおくと, 62 4 (3) 頂点のy座標は -1であるから グラフは次のようになる。 4 YA の値を増加させると,頂点のy座標は増 60 のとき 加する。 ≧0のときの値を増加させると, 頂点の座標は 減少する。 思考プロセス | y=x2+bx-1 b=2 J 6 7
二次関数

回答

まだ回答がありません。

疑問は解決しましたか?