数学
高校生

この問題の(2)がsinC=sin(A+B)になる所から分からないです。教えていただけると助かります、よろしくお願いします。

0 (ウ) Cos20。 COs 40° cosW (1) 積→和,和→積の公式を用いて,次の値を求めよ。 (ア) sin75°cos 15° (イ) sin75°+sin15° (2) AABC において, 次の等式が成り立つことを証明せよ。 C inA B COS COS sin A+sinB+sinC=4cos 2 22 p.239 基本事項0, 2 (重要 6, TC-nie-( miel=0 指針>(2) AABCの問題には, A+B+C=π (内角の和は180°)の条件がかくれていス の 0ie ーA+B+Cーェから,最初にCを消去して考える。 そして,左辺のsinA+sinBに和→積の公式を適用。 解答 (1)(ア) sin75°cos 15°= {sin(75°+15°)+sin(75°-15°)} ーa-aリ--)- 1 V3 2+/3 ( -(sin90°+sin60°)= 2 2 2 4 75°+15° 75°-15° COS -2sin 45°cos 30°=2. 12.3_i (イ) sin75°+sin15°=2sin- 2 2 21 1/1 (ウ) cos 20°cos 40°cos 80°= 2 {cos 60°+cos(-20)1cos 80°%3D( 2 +cos 20° cosl) ニ 1 ( -1 cos 80"+ cos 20°cos80"=jcos 80°+ 22C0S 1 11 {cos 100°+cos(-60)) 2 4 -cos 80° + 1 -cos 100°+ 4 1 1 -cos(180°-80°)+。 1_ 三 8 4 1 1 1 8 Cos 80°-- 1 三 -Cos 80°+ 4 cos(セ-9) 200 ミ 8 (2) A+B+C=元から C=π-(A+B) ゆえに sinC=sin(A+B), cos=cos( A+B 2 A+B =sin 2 π COS 2 (osg! よって U sin A+sinB+sinC=2sin A+B COS 2 200 A+B A-B A+B- +sin2 2 2 A+B 2。 =2sin A-B COS +cos 2 の方式 C 2 =2cos2cos cos(-号) A COS B =4cos A B COS COS 2 C 2 2 。 練習 (1) 積 →和 和

回答

まだ回答がありません。

疑問は解決しましたか?