数学
高校生
解決済み

至急お願いします!🙇‍♂️💦
写真2枚目の緑矢印の式変形がどうして成り立つか分かりません

EX 14 n 行の自然数について, 数字1を奇数個含むものの個数をf(n) とする。ただし, nは自然数と する。 (1)(2), S(3) を求めよ。 (2) S(n+1)=8S(n)+9·10"-! が成り立つことを示せ。 (1) まず,1桁の自然数で数字1を奇数個含むものは1だけであ るから 2桁の自然数で数字1を奇数個含むものは, 1の後に0または2~9を付け加えて作られるものが 一試験) f(1)=1 そ1口の口に0または2 9個 ~9を入れると考える。 る。 2~9の後に1を付け加えて作られるものが あるから 次に,3桁の自然数で数字1を奇数個含むものは, 次のように して作ることができる。 [1] 2桁の自然数で1を奇数個含むものの後に, 0または2~ 8個 そ2口,……, 9■ の口 f(2)=9+8=17 に1を入れると考える。 そ例えば,14口の口に 0または2~9を入れる。 9を付け加える。 [2] 2桁の自然数で1を偶数個含むものの後に,1を付け加え そ1が0個のものも含む。 る。 そ10 から 99 までの 2桁の自然数は90 個あるから f(3)=f(2)×9+ {90-f(2)}×1=8f(2)+90 =8·17+90=226 99-10+1=90 (個) (2) n+1 桁の自然数で数字1を奇数個含むものは,次のように して作ることができる。 [1] n桁の自然数で1を奇数個含むものの後に, 0または2~ または 9を付け加える。 12」 n桁の自然数で1を偶数個含むものの後に, 1を付け加え る。
数学A n桁の自然数の個数は (10"-1)-10"-1+1=10"-10nCi=1010"-1-10"-1=9·10"-1 したがって S 式0 そ10"-1 から10"-1まで の個数。 f(n+1)=f(n)×9+(9·10"-1-f(n)}×1 =8f(n)+9-10"-1 O EX 15 Aさんとその3人の子ども, Bさんとその3人の子ども, Cさんとその2人の子どもの合わせ て11人が, AさんとAさんの三男は隣り合わせになるよっにして, 円形のテーブルに着席する。 このとき,それぞれの家族がまとまって座る場合の着席の仕方はア 通りま。 異
場合の数

回答

✨ ベストアンサー ✨

10×10ⁿ⁻¹=10¹×10ⁿ⁻¹  
    =10¹⁺ⁿ⁻¹ ←指数法則
    =10ⁿ

すなわち、10ⁿ=10×10ⁿ⁻¹

分からなければ質問してください

みゆ

分かりました!ありがとうございます🎗️

この回答にコメントする
疑問は解決しましたか?