数学
高校生
どうしてこの形になるのか教えてください
長い方の辺
* ム
枚重ならないように並べて, 縦の長さが2, 横の長さがnである長方形の領域を埋
め尽くすことを考える。正の整数nに対して, タイルの並べ方を an 通りとすると、
a1 = 1, a2 = 2, a3 =3である。
縦2横nの長方形領域 タイルの並べ方
n=1
4,=1
n=2
=2
n=3
3-3
(1) a4 =
(ア)
(イ)|である。
45 ミ
lartan-z
(ウ) |である。
(2) n23のとき, anを an-1
と
を用いて表すとan
an-2
(3) (2) の式をan + aan-1 = B(an-1 + αan-2) (α< B) の形に変形する。 こ
のように変形できる。αは2つあり, それぞれ α1, α2 (α1 < α2) とすると
(21, 02) =| (エ)
である。
(4) n22のとき, Cn= amtαian-1, dn = an+ α2an-1 とする。 このときcn
よびをnの式で表すと Ch
(オ)
(カ)である。
(5) n23のとき, anをnの式で表すと an
(キ)である。
使聞して an-へケにする
an: 1β-4)an-1t 以FQa2
うにおいてすべての hn-i,
-は)an-1 t以βan-2
バ成り在つから
「e-ド-|
an-2で
Xの
hu-Lt an-zえ
こ
ド= 4E ar p-15
-1け5
京都産業大-一般 2
248 2016年度 数学(解答)
(8-a)an-1taBan-2=Qn-1+am-2
が成り立つから
/8-a=1
la8=1
-1土15
B=
1土(5
(複号同順)
2
a=
2
したがって,求める α1, Cz (αr<C2) は
-1-15
-1+V5
2
(Ci,
2
(4) (3)の結果より, α=Ciのとき β=B とすると
antitauln=A(nteian-1)
Cn+1=Bicn
変えたパージョン
よって
へをんてに
-2
Cn=CaB"
3-5
×1=
2
B=1+a=ー
2
1-15
より
C2=Q2taiai=2+
2
n-2
3-5 /1-/5
Cnミ
2
2
同様にして,α=zのとき β=Baとすると
an+1+azan= B2(antazan-1)
dn+1=Bedn
よって
dn=daBe"-2
ー1+,5
d2=a2+axa;=2+
2
3+ 5
-×1=
2
1+ 5
B2=1+2=
より
2
n-2
dn=
2
→(カ)
2
(5) (4)の結果より, n>3において
antaan-1=an+
-1-5 -3-15 /1-15
n-2
an-1=
2
2
2
antazan-1=an+
-1+\5
3+ 5
n-2
1+/5
an-1=
2
2
Ox1+,5
2
-@x_1-15
より
2
2
15a=(2+-5)(14,5-(2-
¥5 4,=(2+、5)1+5
n-2
(2-,5)(155)
n-2
1+.5
n+1
1-15
n+1
2
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6085
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6079
51
詳説【数学A】第2章 確率
5840
24