Mathematics
高中
已解決

次の(2)の問題で何故青線でkを-1と置くのでしょうか?どなたか解説お願いします🙇‍♂️

思考のプロセス ... 2 円 x2 + y = 4 ... ① と x + y2 + 4x - 2y+4 = 0 ・・・ ② について (1) 2円 ①,② は, 異なる2点で交わることを示せ。 (2)2円 ①,② の2つの交点を通る直線の方程式を求めよ。 (3)2円 ①,②の2つの交点と原点を通る円の方程式を求めよ。 (1)《ReAction 2円の位置関係は,中心間の距離と半径の和 差を比べよ (2),(3) 素直に考えると・・・ 例題101 ①②の交点の座標を実際に求め, それらを通る直線や円を考える。 ← 計算が繁雑 ↓見方を変える 《ReAction 2つの図形f(x,y)=0とg(x,y)=0 の交点を通る図形は, f (x,y) +kg (x, y) = 0 とおけ 2つの円のときも、同様に考える。 例題 84) ①:x2+y2-4=0, ②: x+y2+4x-2y+4=0に対して移項して右辺を0にする。 (x2+y^+4x-2y+4+h(x2+y^-4) = 0 が表す図形は, ① ② の交点を通る円または直線を表す (Play Back 9 参照)。 解 (1) ② を変形すると (x+2)+(x-1)=1 題 よって, 2円の中心間の距離 d は 01 d=(-2)+1 = √5 円 ①,② の半径をそれぞれn, P2 とすると 1円①の中心は (0,0) 円②の中心は (-2, 1) • n=2,12=1 11-22-1 =2-1=1, n+r=2+1=3 したがって, n<d<nt が成り立つから, 円 ①,②は異なる2点で交わる。 題! 84 調 (2) 2円 ①,②の交点を通る円または直線の方程式は、 ① を除いて次のように表すことができる。 (x2+y2+4x-2y+4)+k(x+y-4) = 0 (3 k=1のとき,③は直線を表すから (x2 +y +4x-2y+4) + (−1)(x + y -4) = 0 よって 2x-y+4=0 2つの円が異なる2点で 交わる条件(数学A )。 Play Back 9 参照 (x+y2-4)+k(x+y2 +4x-2y+4) = 0 とおいてもよい。 このと きは円②を除く。 k=-1/

解答

✨ 最佳解答 ✨

直線はx,yの1次式なので、
③が直線になるとしたらk=-1しかありません
k=-1のとき2次の部分は消えるので

星光

有り難う御座います!

留言
您的問題解決了嗎?

看了這個問題的人
也有瀏覽這些問題喔😉