Mathematics
高中
已解決
最後の方でベクトルhとB CそれぞれかけたものがなぜベクトルBかけるcにどちらともなるのか教えていただけると助かります
よろしくお願いします
5
第2節 ベクト
平面図形
39
42
C 内積の利用
応用
直角三角形でない △ABCの頂点 B, C から, それぞれの対辺
例題
4
CA, AB またはその延長上に下ろした垂線の交点をHとする
と,AH⊥BC であることを証明せよ。
解説
BHAC, CHLABであることから,AH」BC を示す。
証明 AB=6,ACC, AH とする。
BH⊥ACから
(h-b).c=0
h.c-b.c=0
h•c=b.c
①
B
ゆえに
10
よって
CHABから
(h-c).b=0
ゆえに
h•b-c•b=0
よって
②
15
① ② から
20
H
AĤ·BĊ=h•(c—b)=h·c—h·b
=b.c-b.c=0
平面上のベクトル
AH ≠0, BC ¥0 であるから
AHLBC
したがって
AH1BC
終
一般に,三角形の3つの頂点から,それぞれの対辺またはその延長上
に下ろした垂線は,1点で交わる。 この交点を、 その三角形の垂心という
A
練習 ∠Aが直角である直角二等辺三角形ABC
27
M
CA ABを2:1に内分
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6060
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6032
51
数学ⅠA公式集
5608
19
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4536
11
詳説【数学A】第3章 平面図形
3595
16
詳説【数学Ⅰ】第三章 図形と計量(後半)~正弦・余弦定理~
3519
10
詳説【数学A】第4章 命題と論理
2819
8
詳説【数学Ⅱ】第2章 図形と方程式(上)~点と直線~
2649
13