Mathematics
高中
已解決
どのようにしたら下線部のように変形できるのですか?
91
n は自然数とする。 数学的帰納法を用いて,次の等式を証明せよ。
*(1)1+2・3/3+3
1+2+3(3)++ (3)-2(n-2)()+4
91 証明すべき等式を (A) とする。
(1) [1] n=1のとき
左辺 = 1,
右辺 =2・(1-2)・
+4=1
よって, n=1のとき, (A)が成り立つ。
[2]n=kのとき (A) が成り立つ, すなわち
1+2.3+
3\k-1
3
+… +k
=2k-2) +4
2
が成り立つと仮定すると, n=k+1のときの
(A) の左辺は
1+2.2
(3\
+… +k
+ (k+1)
2
=2(k-2)
2(33)*+4+(k+1)(2)*
3
k
=(3k-3) +4
2
k
=3(k-1)(2) +4
n=k+1のときの (A) の右辺は
3\+1
2{(k+1)-2}
+4
2
3k+1
=2(k-1)(
+4
2
3/3\/
=2(k-1).
+4
22
=3k-1)(2)+4
よって, n=k+1のときも (A) が成り立つ。
[1], [2] から,すべての自然数nについて (A) が
成り立つ。
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
【受験】社会 歴史まとめ
15787
154
【まとめ】文明のおこり・律令国家の成立・貴族政治
10361
124
【テ対】ゴロで覚える!中学歴史
8762
68
【まとめ】鎌倉幕府・室町時代・ヨーロッパ世界の形成
8460
144
BA遅くなって申し訳ございませんでした😓
ありがとうございました🙇