Mathematics
高中
已解決

解答とは違う解き方で解きましたが、(2)の答えが合いません。×2が足りないそうですが、どこで間違えたのでしょうか。

92項間漸化式/an+1=pan+f(n) - 次の式で定められる数列の一般項 4 を求めよ. (1) a=1, n+1=20n+n (n=1,2,3, ...) (2) a1=4,n+1=40-2"+1 (n=1, 2, 3, ...) (弘前大・理工-後) (信州大工) 型の漸化式を解く 2項間漸化式の解き方 an+1=pan+f(n) (p=0.1:f(n)はnの式) には、変形して+1+g(n+1)=plan+g(n)}となるようなg(n) を見つけて, {an+g(n)}が等比 数列になることを用いればよい (i) f(n)がnの多項式の場合,g(n)もf(n)と次数が等しいnの多項式である。g(n)の係数を 未知数とおいて,☆より係数を求めればよい。 特にf (n) が定数の場合は前頁で扱った. (ii) f(n)=Aq" (g≠p, A は定数) の場合,g(n)=Bg”として, が成り立つように定数Bを定め an+1 an ればよい.また,an+1= pan+Ag" の両辺を"+1で割って, +A p" +1 (2)². ここで, an A bn とおいて, bm+1=bn+ として階差型の解き方 (前頁)に持ち込む手でもよい。 P 解答 (1) an+1+A(n+1)+B=2(an+An+B) を満たす A, B を求める. an+1=2an+An+B-A と条件式を比べて, A = 1, B-A=0 :.B=1 an+1+(n+1)+1=2(a+n+1)より,{an+n+1}は公比2の等比数列. よって, an+n+1=2"-1 (Q1+1+1)=3·2"-1 .. an=3.2"-1-n-1 左辺はA(n+1) になることに注 意. (2) +1=44-2n+1 を 4n+1で割って an+1 an 1+1 4n+1 an 4" 2 \+1 == 4" bm=211 とおくと, b1=41=1,n+1=bn-(12)となるので2のとき 【 (2) の別アプローチ】 f(n) が Ag” の形の場合は、両辺 を Q"+1 で割ると, 典型的な2項 間漸化式に帰着されることに着 目. 漸化式を 2 +1 で割って, 1 \n-1 -1 bm=b1+2(bk+1-bh)=1- k=1 -1- 12/12(1/2)-1/12+(1/1) n-3 1+1 2 an+1 an ・=2. =1- -1 2"+1 2" 11-113 an 2" Cn= とおくと, C+1=2cm-1. (n=1のときもこれでよい) これから解く. よって,=40=4 =4*{/12+(1/2)"} =2.4"-1+2" 【別解】 (2) an+1+A.2"+1=4(an+A2") を満たす A を求める. an+1=40+4A2"-A2n+1=40+A2"+1 と条件式を比べて, A=1. an+1-2n+1=4(an-2")より, {4-2"}は公比4の等比数列. よって, an-2"=4"-1(α1-21)=2.4-1 . 9 演習題(解答は p.75) 次の式で定められる数列の一般項4 を求めよ. an=2.4"-1+2" (1) 41=2,4+1=3an+2n2-2n-1 (n≧1) (2) α=1,n+1-20万=n.2n+1 (n≧1) (岐阜大) (日本獣医畜産大) (1), (3) an+1+f(n+1) =k(a+f(n)) となる (日)を探す
27H≠0より両辺を2で割る Dan 42 2 * 85k 2 1.7 1287 2 2 = 416 to 132082 ar 2' 定数のmd=20-1②をみたすようにとる ane Qn ×2-1 2=1でおり ①②辺に引いて 2n+1 2" Q -21= -2-1 Que ghti 12 / -11 -2 (^^ -1) よっっ An 2" 2" - = は初 1.2 an 2n 壁に1、2の等比数列 A==.2") 2" =221 Qn=(2^^+1)2" 227-1+27 = 4" 2" 0% gam

解答

✨ 最佳解答 ✨

最後の最後で間違えてます。おしい!

留言
您的問題解決了嗎?