Mathematics
高中
已解決
漸化式型の無限等比数列の問題で、この1/4はどこから出てくるのですか?
□ 49 次の条件によって定められる数列{a} について, 次の問いに答えよ。
3an+4
a1=8, an+1=
(n=1,2,3, ...)
an+3
1
(1) bn=
An-2
とおくとき,{b} の一般項を求めよ。
(2){an} の一般項とその極限を求めよ。
ta
49 (1) b+1=
018
an+1-2
にan+1=
3an+4
を代入
an+3
して b+1=
1
an+3
5
3a,+4
=1+
an-2
-
- 2
an-2
an+3
ゆえに b+1=56+1
よって bolf1-5/6+1)
また
4 a₁-2
61 + 1 = 41-2 + 1 - 1 + 1/2-1/2
5
しか
ゆえに、数列{bm+ 1/2 は初項 12 公比5の等
5
54 公比を!
5
比数列で
bn+
.5"-1
12
bm
したがって 15123
5"
5"-3
=
12
4
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
【受験】社会 歴史まとめ
15787
154
【まとめ】文明のおこり・律令国家の成立・貴族政治
10361
124
【テ対】ゴロで覚える!中学歴史
8762
68
【まとめ】鎌倉幕府・室町時代・ヨーロッパ世界の形成
8460
144