設∠ABE = θ = 45° , ∠AEB = φ = 120°
在 △ABE 中,利用正弦定理
AE / sinθ = AB / sinφ = BE / sin∠1
也就是
AE / sin45° = 1 / sin120° = BE / sin15°
所以
AE = sin45° / sin120° = √6/3
BE = sin15° / sin120° = (3√2 - √6)/6 = √2/2 - √6/6
所求 = √6/3 - (√2/2 - √6/6) = √6/2 - √2/2