Mathematics
高中

右側のステップ4のx=aを代入するとのところからわかりません

第6章 微分法と積分法 第3節 積分法 8-1 定積分の定義 定積分 ●定積分とは| ② グラフy=f(x)とx軸、y軸、y軸に平行な直線で囲まれた部分の 面積は、関数f(x)とどのような関係にあるか? f(x)=1 f(x)=x f(x)=x+1 f(x)=x² f(x)=x³ を求める計算! y=f(x), x軸で囲まれた 10~xの面積 横 C te² 1/2x2x 1/3x ² 3 ●積分と微分の関係 ? a≦x≦bの範囲でf(x)≧0のとき一簡単にするため y=f(x)、x軸、x=a、x=bで 囲まれた部分の面積Sを求めよう! step. 1 αからxまでの面積をS(x) とする。 S(th) O ol a y 2 求める面積を微分すると、 関数f(x)になる y=f(x)のグラフで囲まれた面積を計算するときは、 微分の逆をする x x 1x S(xXx) 積分する x+1 xh S(b)=S b S(2ch) step. 2 xからx+hの間で、f(x)の最大値をM (x,f(x)) 最小値をm とする y=f(x) step.3 aubの面積 右の図より、 mh≤S(x+h)-S(x) ≤Mh S(x+h)-S(x) -SM h h→0のとき ms. (f(x)] [5'(x)] よって step.4 境界線を横行すると面積この逆 両辺をxで不定積分すると、 $CON S(x)=f(x)dx=F(x)+C x=a を代入すると よって f(x) [S'(x)=f(x) 面積を微分すると. 境界線になる S(a)=F(a)+C 0=F(a)+C C=-F(a) S(x)=F(x)-F(a) 範囲a~b ※f(x)を積分して、それに を代入したものから (x) x を代入したものを 引いてね、という記号 S(x+h) -S(x) ※F(x) という数に x=0を代入したものから a x ↑ ●定積分の定義と記号 <定積分の定義> F'(x)=f(x)のとき f(x)dx=[F(x]=F(b)-F(a) を代入したものを 引いてね、という記号 x+h すなわち m W 9 x=bを代入すると x+h S(b)=F(b)-F(a) S=F(b)-F(a) [[例13] 面積Sは、こうやって 計算することができる! ※ただし、 20に限る 14 a x=aからx=bまで 関数f(x) をxで 定積分する、という

解答

尚無回答

您的問題解決了嗎?