Mathematics
高中

数学の一次不等式の問題ですが、この単元が苦手すぎて解説が頭に入ってきません。どなたか1から説明してください、お願いします🙇‍♀️

重要 例題 38 (1) 不等式a(x+1)>x+α² を解け。ただし, aは定数とする。 (2) 不等式 ax < 4-2x<2xの解が1<x<4であるとき,定数aの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 99 \ 指針文字を含む1次不等式(Ax> B, Ax<B など) を解くときは,次のことに注意。 A=0のときは,両辺を A で割ることができない。 -一般に, 「0で割る」 と ・A<0のときは,両辺を4で割ると不等号の向きが変わる。いうことは考えない。 答 (1)(a-1)x>a(a-1) と変形し,α-1> 0, a-1=0, a-1<0 の各場合に分けて解く。 ax<4-2x (2) ax<4-2x<2xは連立不等式 と同じ意味。 4-2x<2x (B まず, B を解く。その解と A の解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0 で割るのはダメ! よって x> 4 a+2 (1) 与式から [1] α-1>0 すなわち α>1 のとき [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] a-1 <0 すなわち α <1のとき a>1のときx>a, a=1のとき 解はない, La<1のとき x<a (2) 4-2x<2x から -4x <-4 よって ゆえに,解が1<x< 4 となるための条件は, ax<4-2x ① からの (a+2)x <4 [1] α+2>0 すなわちa>2のとき、②から 0x<- 4 a+2 よって ゆえに 4= 4(a+2) よって これはα>-2を満たす。 [2] α+2=0 すなわちα=-2のとき, ② は 0・x<4 よって,解はすべての実数となり,条件は満たされな04は常に成り立つか SI ** い。 [3] a+2<0 すなわちa<-2のとき, ② から TAMS0345 co (a−1)x>a(a−1) ·· ① [1]~[3] から ...... (A) x>a ① は 0x>0 x<a 4 a+2 a=-1 A>x$ ① の解がx<4となることである。 x>1 -=4| まず, Ax>Bの形に。 1① の両辺をα-1 (>0) で割る。 不等号の向きは 変わらない。 このとき条件は満たされない。 a=-1 <0>0は成り立たない。 >負の数で割ると、不等号 の向きが変わる。 晶検討 A=0のときの不等式 Ax >Bの解 =0のとき, 不等式は 0.x>B よって B≧0なら 解はない B<0なら 解はすべての 実数 両辺にα+2 (0) を掛 けて解く。 30 ら解はすべての実数。 IST <x<4と不等号の向きが 違う。
PromotionBanner

解答

尚無回答

您的問題解決了嗎?