Mathematics
高中
微分でなぜ増減が写真のようになっているのですか?
よろしくお願いします
次の関数の極値を求めよ。
例題
(1) f(x)= xe-x
(2) f(x) =x+1
x
解答
f(x) =0 とすると
f(x)の増減表は次のようになる。
x=1
*e>0 に注意
x
1
f(x)
0
極大
f(x)/
1
*F(1) =1e-=
e
e
よって,f(x)は x=1 で極大値-をとる。極小値はない。
(2) 関数の定義域は xキ0 である。
f(x)=1--=
f'(x)=1-
4
x°-4 _(x+2)(x-2)
,2
x
x*
x*
f(x)=0 とすると
x=-2, 2
f(x) の増減表は次のようになる。
*x>0 に注意
-2
0
2
x
f(x)
0
0
極大
極小
f(x)
4
-4
よって,f(x) は
x=-2 で極大値 -4, x=2 で極小値4をとる。
の章
微分法の応用
解答
尚無回答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8939
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6089
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6082
51
詳説【数学A】第2章 確率
5841
24