Mathematics
มัธยมปลาย
เคลียร์แล้ว
Sn=3n乗−1の一般項を求める問題です。
2・3n−1乗になるのはなんでですか?
(② SS SS
また, 用2 のとき
の@三Sッやヵーュ
三(3?-1)一(3"ー1)
三2・37ー1
2 であるから, み三2・37 は2三1 のとき ゃ成り立つ。
ゆえに =2N2GSS
คำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8918
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6063
51
詳説【数学A】第2章 確率
5839
24
どういう計算でこうなるんですか?