Mathematics
มัธยมปลาย
数学C、極方程式です。
中心が点(a/√2,a/√2)で、半径がaの円の極方程式は、なぜr=2acos(θ-π/4)になるのですか?
解説を見ても知恵袋を見てもよく分からなかったのでめちゃくちゃ噛み砕いて教えていただけると嬉しいです。
呈式を求めよ。
点Pが第1象限内にあるとき,Pは点 (1/12 1/12)を中心とする半径αの
a
a
の周または内部にあることを証明せよ。
[05 鹿児島大〕
คำตอบ
ยังไม่มีคำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8918
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6063
51
詳説【数学A】第2章 確率
5839
24