Mathematics
มัธยมปลาย
เคลียร์แล้ว

これの(2)ってu=sinxって置換したらuの積分範囲が0→0となり、答えが0となってしまいますが、なぜu=sinxと置換できないのでしょうか?

重要 例題 153 置換積分法を利用した定積分の等式の証明(2) ①) 連続な関数f(x)について,等式 Sox (sinx)dx= "" (sinx)dx を示せ。 ogr 0000 (2)(1)の等式を利用して,定積分 " o 3+sin²x nxsinx -dx を求めよ。 [(1) 類 横浜国大] ・基本 148 重要 152 指針 (1) sin(π-x)=sinx であることに着目。 -x=t(x=πート) とおいて,左辺を変形。 →計算を進めると左辺と同じ式が現れるから(同形出現), p.233 重要例題 137 と 同じように処理する。 (2)(1) Cxsinx sinx dx=. -dx である。 23+sin'x 3+sinx=3+ (1-cos'x)=4-cos' x であるから, Cosx=u とおけばよい。 (1)x=-tとおくと dx=-dt x 0 →π との対応は右のようになる。 解答 証明する等式の左辺をIとすると π-> 0 v=Soxf (sinx)dx=S" (t)(sin(x-t))(−1)dt =S"(n-t)f(sint)dt=zSS(sint) dt-Sot(sint)at S-1(x)dx=f(x)dx =xSos(sinx)dx-Soxf(sinx)dx sin(x-t)=sint m =πSof(sinx)dx-1 1=mSof(sinx)dx π よって xsinx 2 Jo (2)ノ=So3sin' x -dx とすると, (1) から sinx π sinx 不 -dx dx=770 4-cos² x 2 Do 3+sin²x COSx=u とおくと sinxdx=du xuの対応は右のようになる。 よって== Sau π -du 定積分の値は積分変数の 文字に無関係。 421=**(sinx)dx t ◄f(t)== は連続な関 数。 3+12 f (cosx) sinx の形。 I-←I u π ←0x =πS' 4— u² du= 4 Sº(2± μ + 2ª¹)du 2+u 偶関数は2倍。 次に、部分分数に分解。 =410g(2+u)-10g(2-1)=¥105 -log3 練習 (1) 連続関数 f(x) が,すべての実数xについてf(x-x)=f(x) を満たすとき, とを証明せよ。

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

u=sinxとおくとdu/dx=cosx
つまりdx=1/cosx duですが、
cosxはx:0〜π/2で√(1-u²)、
x:π/2〜πで-√(1-u²)になります
この不統一な点がうまくいかないポイントかと思います

この辺の処理を無視して、単に積分区間だけ見て
0→0だから0、とは単純にいかないのですね

慣れれば、この問題はcosがメインで、
sinは副産物であることがわかってきます

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉