Mathematics
มัธยมปลาย
เคลียร์แล้ว

⑵なぜ21/5をとったのか
⑶なぜ21/4なのか教えてくださいお願いします🙇

△ABCにおいて, BC = 7, sin∠ABC=- 5 C= 1/3 とする。このとき,△ABCの形 状について考えよう。 オカ オカ (1) ACの長さの最小値は であり, AC= のとき, △ABCは キ (2) 正弦定理により 35 〔2〕 (1) AC の長さが最小となるのは,Cから ABに下ろした垂線が AC となるときである。 このとき AC=BCsin∠ABC =7.. **21 55 であり, ABC は ∠BAC=90° の直角三角 形ただ一通りである。(①) BCの長さを固定し、図をか 考えるとわかりやすい。 A AC 8 sin∠ABC よって AC=321 ク 4. し ケコ ケコ (2)△ABCの外接円の半径が5のとき,AC- である。 AC= サ サ のとき, △ABCは シ (3) AC=7 のとき, △ABCはただ一通りの鈍角三角形である。 -<AC<77 <AC のとき, △ABC は ス 2 ケコ サ ク シ スの解答群(同じものを繰り返し選んでもよい ⑩ただ一通りの鋭角三角形である ①ただ一通りの直角三角形である ②ただ一通りの鈍角三角形である ③二通りあり、それらは鋭角三角形と直角三角形である ④二通りあり、 それらは直角三角形と鈍角三角形である ⑤二通りあり、 それらは鈍角三角形と鋭角三角形である ⑥二通りあり、 それらはどちらも鋭角三角形である ⑦ 二通りあり,それらはどちらも直角三角形である ⑧二通りあり、 それらはどちらも鈍角三角形である (数学Ⅰ 数学A第1問は28ページに続く。) AC sin∠ABC より sin BAC-1/3とな 右の図のように, AC=224 となる点は2つ 存在する。 これらを Ai, A2 とし,さらにAC = 2/3 のと きのAをA' とする。 △A'BCは ∠BA'C=90° の直角三角形である から ABCはBA,Cが鈍角の鈍角三角形 である。 21 21 もう一度正弦定理を用いる BC sin ∠BAC また,A2C2+BC2= 441 の直径であるから 16 1+49=1225=(25) より A2Bは△ABCの外接円 ∠ACB=90° ゆえに, AC-2 のとき, △ABCは二通りあり、それらは直角三角形と鈍 角三角形である。 (4) (3) AC=7 のとき, ABCはただ一通りの鈍角三角形である。 2 <AC<7 のとき, ABCは∠BACまたは∠ACBが鈍角の鈍角三角 4 形である。 また, AC>7 のとき, ABC は∠ABC また は∠ACB が鈍角の鈍角三角形である。 21 よって, <AC<77 <AC のとき, ABC は二通りあり、 それらはどちらも鈍角三角形で ある。 ( 8 ) 問題文の読みとり 〔2〕 △ABCにおいて, BC=7, sin∠ABC= 状について考えよう。 BC=1/23 とする。このとき, ABCの形 0° <∠BAC <180° である 点Aは2通りある。 2-4 BC:AC=7:44:3. sin∠ABC= =1/3 から. △ABC が直角三角形かど 調べてもよい。 <CA=CB, ∠ACB が鈍角 辺三角形。 〔2〕はこの条件の える。 BC=7 とわかっ ら, sin∠ABC る直線BA。 上に るととらえる。 ■基準設定を <第2回> -26-

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉