Mathematics
มัธยมต้น
เคลียร์แล้ว

ㅡこの問題の(2)と(3)を教えてください🙏🏻

3 コンピュータの画面に、 正方形ABCD と、 頂点Bを中心とし、 BAを半径とする円の 一部分が表示されている。 点Pは2点B、 Cを除いた辺BC上を、 点Qは2点C、Dを除いた CD上を、それぞれ動かすことができる。 太郎さんと花子さんは、点P、 Qを動かしながら、 図形の性質や関係について調べている。 このとき、次の(1)~(3)の問いに答えなさい。 (1) 右の図1のように、線分AQ と線分 DP の 交点をRとする。∠PDC = ∠QAD であるとき、 △DPC∽△DQR であることに太郎さんは 気づき、下のように証明した。 a ~cに当てはまるものを、 T↓G➡ の選択肢の中からそれぞれ一つ選んで、 その記号を書きなさい。 CR B ←P→ 図 1 ←Q→ 0 (証明) DPCと△AQDにおいて、 abの選択肢 仮定から、 ∠PDC= ∠QAD ア DQR イ QRD 四角形ABCDは正方形だから、 DC=AD ウ QDR オ ADP I DCP カ RAD <DCP = ∠ADQ=90° ...③ ①、②、③より、 1組の辺とその両端の角が cの選択肢 それぞれ等しいので、 ADPC=AAQD また、DPCとDQRにおいて、 ④より、合同な図形の対応する角は等しいので、 ZDPC=2 また、 共通な角だから、 ⑤、⑥より、 a ∠PDC = ∠ b C ADPC∽△DQR ので、 ア 3組の辺の比がすべて等しい イ 3組の辺がそれぞれ等しい ウ 2組の辺の比が等しく、 その 間の角が等しい エ 2組の角がそれぞれ等しい
の大きさは一定であることに花子さんは気がついた。 ∠AECの大きさを求めなさい。 (2) 下の図2のように、線分AQ と弧ACとの交点をEとすると、点Qを動かしても∠AEC 444 E 図2 B (3)下の図3のように、点P を辺BCの中点となるように動かし、線分 PD と弧 AC との交点を F とする。正方形 ABCDの1辺の長さを10cm とするとき、線分 PF の長さを求めなさい。 図 3 A F C B P

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉